We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachón in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg 2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320-1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg 2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r∼27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.
This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au+Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au+Au at different centralities, the dependence of the yield on the number of participants at higher p T (∼4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as "extended longitudinal scaling". Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.
The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described.
Repetitive-element-derived Piwi-interacting RNAs (piRNAs) act together with Piwi proteins Mili (also known as Piwil2) and Miwi2 (also known as Piwil4) in a genome defence mechanism that initiates transposon silencing via DNA methylation in the mouse male embryonic germ line. This silencing depends on the participation of the Piwi proteins in a slicer-dependent piRNA amplification pathway and is essential for male fertility. A third Piwi family member, Miwi (also known as Piwil1), is expressed in specific postnatal germ cells and associates with a unique set of piRNAs of unknown function. Here we show that Miwi is a small RNA-guided RNase (slicer) that requires extensive complementarity for target cleavage in vitro. Disruption of its catalytic activity in mice by a single point mutation causes male infertility, and mutant germ cells show increased accumulation of LINE1 retrotransposon transcripts. We provide evidence for Miwi slicer activity directly cleaving transposon messenger RNAs, offering an explanation for the continued maintenance of repeat-derived piRNAs long after transposon silencing is established in germline stem cells. Furthermore, our study supports a slicer-dependent silencing mechanism that functions without piRNA amplification. Thus, Piwi proteins seem to act in a two-pronged mammalian transposon silencing strategy: one promotes transcriptional repression in the embryo, the other reinforces silencing at the post-transcriptional level after birth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.