Age-related complications such as neurodegenerative disorders are increasing and remain cureless. The possibility of altering the progression or the development of these multifactorial diseases through diet is an emerging and attractive approach with increasing experimental support. We examined the potential of known bioavailable phenolic sulfates, arising from colonic metabolism of berries, to influence hallmarks of neurodegenerative processes. In silico predictions and in vitro transport studies across blood-brain barrier (BBB) endothelial cells, at circulating concentrations, provided evidence for differential transport, likely related to chemical structure. Moreover, endothelial metabolism of these phenolic sulfates produced a plethora of novel chemical entities with further potential bioactivies. Pre-conditioning with phenolic sulfates improved cellular responses to oxidative, excitotoxicity and inflammatory injuries and this attenuation of neuroinflammation was achieved via modulation of NF-κB pathway. Our results support the hypothesis that these small molecules, derived from dietary (poly)phenols may cross the BBB, reach brain cells, modulate microglia-mediated inflammation and exert neuroprotective effects, with potential for alleviation of neurodegenerative diseases.
The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis.
The involvement of nicotinamide adenine nucleotides (NAD ؉ , NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using 13 C and 31 P NMR to monitor in vivo the kinetics of the pools of NAD ؉ , NADH, ATP, inorganic phosphate (P i ), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of 13 C-labeled NAD ؉ and NADH. The capacity of L. lactis MG1363 to regenerate NAD ؉ was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH ؊ deficient strain was constructed by double crossover. Upon supply of glucose, NAD ؉ was constant and maximal (ϳ5 mM) in the parent strain (MG1363) but decreased abruptly in the LDH ؊ strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH ؊ strain and NADH reached high levels (2.5 mM), reflecting severe limitation in regenerating NAD ؉ . However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mM. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/P i content could play an important role.Lactococcus lactis plays an essential role in the manufacture of a wide range of dairy products. The relative simplicity of L. lactis metabolism that converts sugars via the glycolytic pathway to pyruvate, generating energy mainly through substrate level phosphorylation, makes it an attractive model organism to test metabolic engineering strategies. Moreover, the large number of genetic tools available for L. lactis (1) and the recent release of the complete genome sequence are additional incentives to study the physiology of this organism in great depth (2).Despite numerous studies, a satisfactory answer to the question, What controls the glycolytic flux in L. lactis? has not been put forward. During homolactic fermentation, regulation of the carbon flux has been associated with high levels of fructose 1,6-bisphosphate (FBP), 1 which activates lactate dehydrogenase (LDH; EC 1.1.1.27) and pyruvate kinase (PK; EC 2.7.1.40), directing the flux toward the production of lactate (3). A metabolic shift from homolactic (lactate production) to mixed acid fermentation (ethanol, acetate, and formate production) was observed in glucose-limited chemostat cultures (4). A deviation from homolactic fermentation was also reported under aerobic conditions (5) or during the metabolism of galactose (6). The format...
Bioavailability studies are vital to assess the potential impact of bioactive compounds on human health. Although conjugated phenolic metabolites derived from colonic metabolism have been identified in the urine, the quantification and appearance of these compounds in plasma is less well studied. In this regard, it is important to further assess their potential biological activity in vivo. To address this gap, a cross-over intervention study with a mixed fruit purée (blueberry, blackberry, raspberry, strawberry tree fruit and Portuguese crowberry) and a standard polyphenol-free meal was conducted in thirteen volunteers (ten females and three males), who received each test meal once, and plasma metabolites were identified by HPLC-MS/MS. Sulfated compounds were chemically synthesised and used as standards to facilitate quantification. Gallic and caffeic acid conjugates were absorbed rapidly, reaching a maximum concentration between 1 and 2 h. The concentrations of sulfated metabolites resulting from the colonic degradation of more complex polyphenols increased in plasma from 4 h, and pyrogallol sulfate and catechol sulfate reached concentrations ranging from 5 to 20 mM at 6 h. In conclusion, phenolic sulfates reached high concentrations in plasma, as opposed to their undetected parent compounds. These compounds have potential use as biomarkers of polyphenol intake, and their biological activities need to be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.