Abstract-This paper presents a new multi-aspect pattern classification method using hidden Markov models (HMMs). Models are defined for each class, with the probability found by each model determining class membership. Each HMM model is enhanced by the use of a multilayer perception (MLP) network to generate emission probabilities. This hybrid system uses the MLP to find the probability of a state for an unknown pattern and the HMM to model the process underlying the state transitions. A new batch gradient descent-based method is introduced for optimal estimation of the transition and emission probabilities. A prediction method in conjunction with HMM model is also presented that attempts to improve the computation of transition probabilities by using the previous states to predict the next state. This method exploits the correlation information between consecutive aspects. These algorithms are then implemented and benchmarked on a multi-aspect underwater target classification problem using a realistic sonar data set collected in different bottom conditions.
Abstract-Classification of underwater targets from the acoustic backscattered signals is considered here. Several different classification algorithms are tested and benchmarked not only for their performance but also to gain insight to the properties of the feature space. Results on a wideband 80-kHz acoustic backscattered data set collected for six different objects are presented in terms of the receiver operating characteristic (ROC) and robustness of the classifiers wrt reverberation.Index Terms-K-nearest neighbor (K-NN) classifier, neural networks, probabilistic neural networks (PNNs), support vector machines (SVMs), underwater target classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.