Chromosomal inversions play an important role in local adaptation. Inversions can capture multiple locally adaptive functional variants in a linked block by repressing recombination. However, this recombination suppression makes it difficult to identify the genetic mechanisms that underlie an inversion's role in adaption.In this study, we explore how large-scale transcriptomic data can be used to dissect the functional importance of a 13 Mb inversion locus (Inv4m) found almost exclusively in highland populations of maize (Zea mays ssp. mays). Inv4m introgressed into highland maize from the wild relative Zea mays ssp.mexicana, also present in the highlands of Mexico, and is thought to be important for the adaptation of these populations to cultivation in highland environments. First, using a large publicly available association mapping panel, we confirmed that Inv4m is associated with locally adaptive agronomic phenotypes, but only in highland fields. Second, we created two families segregating for standard and inverted haplotypess of Inv4m in a isogenic B73 background, and measured gene expression variation association with Inv4m across 9 tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects of the highland Inv4m haplotype, and the local cis-regulatory variation present within the locus. We 1/33 found diverse physiological effects of Inv4m, and speculate that the genetic basis of its effects on adaptive traits is distributed across many separate functional variants. Author SummaryChromosomal inversions are an important type of genomic structural variant. However, mapping causal alleles within their boundaries is difficult because inversions suppress recombination between homologous chromosomes. This means that inversions, regardless of their size, are inherited as a unit. We leveraged the high-dimensional phenotype of gene expression as a tool to study the genetics of a large chromosomal inversion found in highland maize populations in Mexico -Inv4m. We grew plants carrying multiple versions of Inv4m in a common genetic background, and quantified the transcriptional reprogramming induced by alternative alleles at the locus. Inv4m has been shown in previous studies to have a large effect on flowering, but we show that the functional variation within Inv4m affects many developmental and physiological processes.Chromosomal inversions are structural rearrangements that form when a portion of a chromosome breaks in 2 two places and reinserts in the opposite orientation. The reversed order of loci prevent recombination with 3 the non-inverted homologous chromosome, as crossover products are imbalanced and often non-viable [1]. 4This spontaneous, long-distance genetic linkage is important for speciation and local adaptation because it 5 can capture multiple adaptive and potentially interacting loci in a single haplotype [2][3][4]. Inversions are 6 common across taxa [1], often pre-date speciation events, and can spread through admixture [5,6]. They 7 have been link...
Chromosomal inversions play an important role in local adaptation. Inversions can capture multiple locally adaptive functional variants in a linked block by repressing recombination. However, this recombination suppression makes it difficult to identify the genetic mechanisms underlying an inversion’s role in adaptation. In this study, we used large-scale transcriptomic data to dissect the functional importance of a 13 Mb inversion locus (Inv4m) found almost exclusively in highland populations of maize (Zea mays ssp. mays). Inv4m was introgressed into highland maize from the wild relative Zea mays ssp. mexicana, also present in the highlands of Mexico, and is thought to be important for the adaptation of these populations to cultivation in highland environments. However, the specific genetic variants and traits that underlie this adaptation are not known. We created two families segregating for the standard and inverted haplotypes of Inv4m in a common genetic background and measured gene expression effects associated with the inversion across 9 tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects of the highland Inv4m haplotype, and the local cis-regulatory variation present within the locus. We found diverse physiological effects of Inv4m across the 9 tissues, including a strong effect on the expression of genes involved in photosynthesis and chloroplast physiology. Although we could not confidently identify the causal alleles within Inv4m, this research accelerates progress towards understanding this inversion and will guide future research on these important genomic features.
Populations are locally adapted when they exhibit higher fitness than foreign populations in their native habitat. Maize landrace adaptations to highland and lowland conditions are of interest to researchers and breeders. To determine the prevalence and strength of local adaptation in maize landraces, we performed a reciprocal trans-13 C = 13 C Sample : 12 C Sample 12 C Standard : 12 C Standard − 1 * 1000.
BackgroundGene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions.MethodsAllele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments.ResultsA total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates.DiscussionPrior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation and population data, allele specific expression analysis of plants grown under benign conditions provides an attractive strategy to identify functional variation potentially linked to local adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.