SUMMARYA finite difference upwind discretization scheme in two dimensions is presented in detail for the transient simulation of the highly coupled non-linear partial differential equations of the full hydrodynamic model, providing thereby a practical engineering tool for improved charge carrier transport simulations at high electric fields and frequencies. The discretization scheme preserves the conservation and transportive properties of the equations. The hydrodynamic model is able to describe inertia effects which play an increasing role in different fields of micro-and optoelectronics, where simplified charge transport models like the drift-diffusion model and the energy balance model are no longer applicable. Results of extensive numerical simulations are shown for a two-dimensional MESFET device. A comparison of the hydrodynamic model to the commonly used energy balance model is given and the accuracy of the results is discussed.
Abstract:Interferometric measurements beyond the coherence length of the laser are investigated theoretically and experimentally in this paper. Thanks to a high-bandwidth detection, high-speed digitizers and a fast digital signal processing, we have demonstrated that the limit of the coherence length can be overcome. Theoretically, the maximal measurable displacement is infinite provided that the sampling rate is sufficiently short to prevent any phase unwrapping error. We could verify experimentally this concept using a miniature interferometer prototype, based on a frequency stabilized vertical cavity surface emitting laser. Displacement measurements at optical path differences up to 36 m could be realized with a relative stability better than 0.1 ppm, although the coherence length estimated from the linewidth and frequency noise measurements do not exceed 6.6 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.