AvrPtoB, initially identified through its activation of hypersensitive resistance in tomato cultivars expressing the Pto kinase, is composed of at least two functional domains: the N terminus is responsible for interaction with Pto, and the C terminus carries an E3 ligase activity. Based on our findings, we propose that both domains of AvrPtoB act together to support the virulence of PtoDC3000 in Arabidopsis through their ability to eliminate FLS2 from the cell periphery, and probably also other PAMP sensors that are constitutively expressed or induced after pathogen challenge.
SummaryThe virulence and avirulence activities of members of the Pseudomonas syringae HopAB family of effectors and AvrPto were examined in bean, tomato and Arabidopsis. Proteins were delivered by the RW60 strain of P. syringae pv. phaseolicola. RW60 causes a hypersensitive reaction (HR) in bean and tomato but is restricted without the HR in Arabidopsis. Dual avirulence and virulence functions in tomato and bean, respectively, were identified in virPphA homologues but only avrPtoB strongly enhanced virulence to Arabidopsis, overcoming basal defences operating against RW60. Virulence activity in both bean and Arabidopsis required regions of the C-terminus of the AvrPtoB protein, whereas elicitation of the rapid HR in tomato, with the matching Pto resistance gene, did not. The effect of AvrPtoB on Arabidopsis was accession-specific; most obvious in Wassilewskija (Ws-3), intermediate in Columbia and not detectable in Niedersenz (Nd-1) after inoculation with RW60 þ avrPtoB. Analysis of crosses between Ws-3 and Nd-1 indicated co-segregation for the AvrPtoB virulence function with the absence of the Nd-1 FLS2 gene which mediates recognition of bacterial flagellin. In planta expression of AvrPtoB did not prevent the HR activated by P. syringae pv. tomato DC3000 þ avrB, avrRpm1, avrRps4 or avrRpt2, but suppressed cell wall alterations, including callose deposition, characteristic of basal defence and was associated with reprogramming of the plant's transcriptional response. The success or failure of AvrPtoB in suppressing basal defences in Nd-1 depended on the timing of exposure of plant cells to the effector and the flagellin flg22 peptide.
SummaryChanges in transcription in leaves of Arabidopsis thaliana were characterised following challenge with strains of Pseudomonas syringae pv. tomato DC3000 allowing differentiation of basal resistance (hrpA mutants), gene-specific resistance (RPM1-specified interactions) and susceptibility (wild-type pathogen). In planta avirulence gene induction, changes in host [Ca 2þ ] cyt and leaf collapse were used to delineate the transition from infection to induced resistance. The plant responds rapidly, dynamically and discriminately to infection by phytopathogenic bacteria. Within the first 2 h host transcriptional changes are common to all challenges indicating that Type III effector function does not contribute to early events in host transcriptome re-programming. The timing of induction for specific transcripts was reproducible, hierarchical and modulated at least in part through EDS1 function. R gene-specific transcripts were not observed until 3 h after inoculation. Intriguingly, the R gene-specific response proteins are expected to localise to diverse cellular addresses indicative of a global impact on cellular homeostasis. The altered transcriptional response rapidly manifests into initial symptoms of leaf collapse within 2 h, although establishment of the full macroscopic HR occurs significantly later.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.