This paper addresses the problem of stability analysis of finite-difference time-domain (FDTD) approximations for Maxwell's equations. The combination of the von Neumann method with the Routh-Hurwitz criterion is proposed as an algebraic procedure for obtaining analytical closed-form stability expressions. This technique is applied to the problem of determining the stability conditions of an extension of the FDTD method to incorporate dispersive media previously reported in the literature. Both Debye and Lorentz dispersive media are considered. It is shown that, for the former case, the stability limit of the conventional FDTD method is preserved. However, for the latter case, a more restrictive stability limit is obtained. To overcome this drawback, a new scheme is presented, which allows the stability limit of the conventional FDTD method to be maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.