An account is given of the current state of understanding of aqueous salt, acid, and lipid/water surfaces, interfacial depth, and molecular organization within the air-solution interfacial region. Water structure, hydration, surface propensity of solutes, and surface organization are discussed. In this perspective, vibrational sum frequency generation spectroscopic studies of aqueous surfaces are interpreted. Comment on future directions within the field of aqueous surface structure is provided.
Abstract. We report measurements of ambient amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest and a moderately polluted midwestern site during the summer. At the forest site, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected, and they both showed temperature dependencies. Aerosol-phase amines measured thermal-desorption chemical ionization mass spectrometer (TDCIMS) showed a higher mass fraction in the evening with cooler temperatures and lower in the afternoon with warmer temperatures, a trend opposite to the gas-phase amines. Concentrations of aerosol-phase primary amines measured with Fourier transform infrared spectroscopy (FTIR) from micron and submicron particles were 2 orders of magnitude higher than the gas-phase amines. These results indicate that gas to particle conversion is one of the major processes that control the ambient amine concentrations at this forest site. Temperature dependencies of C3-amines and ammonia also imply reversible processes of evaporation of these nitrogen-containing compounds from soil surfaces in daytime and deposition to soil surfaces at nighttime. During the transported biomass burning plume events, various amines (C1–C6) appeared at the pptv level, indicating that biomass burning is a substantial source of amines in the southeastern US. At the moderately polluted Kent site, there were higher concentrations of C1- to C6-amines (pptv to tens of pptv) and ammonia (up to 6 ppbv). C1- to C3-amines and ammonia were well correlated with the ambient temperature. C4- to C6-amines showed frequent spikes during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Higher amine concentrations measured at the polluted site than at the rural forested site highlight the importance of constraining anthropogenic emission sources of amines.
A new ice core drilled in 2010 to bedrock from the Bruce Plateau (BP) on the Antarctic Peninsula (AP) provides a high temporal resolution record of environmental conditions in this region. The extremely high annual accumulation rate at this site facilitates analysis of the relationships between annual net accumulation An on the BP and large-scale atmospheric oscillations. Over the last ~45 years, An on the BP has been positively correlated with both the southern annular mode (SAM) and Southern Oscillation index (SOI). Extending this analysis back to 1900 reveals that these relationships are not temporally stable, and they exhibit major shifts in the late-1940s and the mid-1970s that are contemporaneous with phase changes in the Pacific decadal oscillation (PDO). These varying multidecadal characteristics of the An–oscillation relationships are not apparent when only data from the post-1970s era are employed. Analysis of the longer ice core record reveals that the influence of the SAM on An depends not only on the phase of the SAM and SOI but also on the phase of the PDO. When the SAM’s influence on BP An is reduced, such as under negative PDO conditions, BP An is modulated by variability in the tropical and subtropical atmosphere through its impacts on the strength and position of the circumpolar westerlies in the AP region. These results demonstrate the importance of using longer-term ice core–derived proxy records to test conventional views of atmospheric circulation variability in the AP region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.