Neutron diffraction techniques used in the study of the structural characteristics of liquid water under ambient conditions are reviewed, showing the way that developments in the experimental and analytic procedures have led to improvements in the extracted results. The three partial pair correlation functions (OH, HH and OO) can be isolated from a set of diffraction measurements with varying hydrogen/deuterium isotopic composition. Although isotopic substitution is used routinely in many other investigations there are particular difficulties with hydrogenous systems due to the high incoherent scattering from hydrogen and the possibility that the H/D substitution is not a true isomorphic replacement. These features are discussed in some detail to analyse the systematic errors and the precision of the final results. An additional aspect of the comparison of data taken by different groups concerns the use of either reactor or pulsed neutron methods. Studies using the Orphee reactor with an over-determined set of five datasets are considered in detail, using analytic correction procedures based on the Powles formalism. Various consistency checks are applied to the data such that smoothing or iteration routines are not required. Two independent sets of the OD and DD pair correlation functions are obtained and are compared with the latest results from Soper et al. The small discrepancies between the various datasets are discussed in terms of propagating systematic errors and also possible variations from H/D equivalence. The relevance of the new results for the interpretation and modelling of ambient water structure are presented and the review ends with a brief comment on likely future developments that incorporate additional experimental information.
The rate of the detected cosmic ray muons depends on the atmospheric mass, height of pion production level, and temperature. Corrections for the changes in these parameters are importance to know the properties of the primary cosmic rays. In this paper, the effect of atmospheric mass, represented here by the atmospheric pressure, on the cosmic ray was studied using data from the KACST muon detector during the 2002–2012 period. The analysis was conducted by calculating the barometric coefficient (α) using regression analysis between the two parameters. The variation ofαover different time scales was investigated. The results revealed a seasonal cycle ofαwith a maximum in September and a minimum in March. Data from Adelaide muon detector were used, and different monthly variation was found. The barometric coefficient displays considerable variability at the interannual scale. Study of the annual variations ofαindicated cyclic variation with maximums between 2008 and 2009 and minimums between 2002 and 2003. This variable tendency is found to be anticorrelated with the solar activity, represented by the sunspot number. This finding was compared with the annual trend ofαfor the Adelaide muon detector for the same period of time, and a similar trend was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.