<abstract><p>In this paper, we present a new numerical method based on the fractional-order Chelyshkov functions (FCHFs) for solving fractional variational problems (FVPs) and fractional optimal control problems (FOCPs). The fractional derivatives are considered in the Caputo sense. The operational matrix of fractional integral for FCHFs, together with the Lagrange multiplier method, are used to reduce the fractional optimization problem into a system of algebraic equations. Some results concerning the approximation errors are discussed and the convergence of the presented method is also demonstrated. The performance of the introduced method is tested through several examples. Some comparisons with recent numerical methods are introduced to show the accuracy and effectiveness of the presented method.</p></abstract>
Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.