This study presents the fabrication of a 3D micro-transformer using MEMS technology in 10-600 kHz frequency range. The fabrication processes is developed for high-performance and low-cost realization with respect to planner design. The coil winding and the magnetic cores were fabricated by electro-deposition using copper and Ni/Fe Permalloy materials, respectively. In step-up configuration, the micro-transformer achieved 73.75% efficiency. The inductance achieved was 90 and 164 µH for primary and secondary coils, respectively. Characterization results and fabrication process of the fabricated transformer (2560×1240 µm) on alumina ceramic substrate are presented.
Lower amount of power delivered from piezoelectric based ambient vibration energy harvester devices is a barrier to adopt the technology for different applications. Energy harvesting circuitry can enhance power output to provide a regulated DC supply to the end application. In this paper, various circuit simulations are carried out to investigate output power enhancement. A parametric analysis of a boost circuit simulation using Cadence OrCAD Capture PSpice software with input less than 1 V is carried out to find the optimum parameters including, the switching frequency rise and fall times, duty cycle, inductance and load capacitance value. Simulation results show that passive component based boost converter can significantly increase the voltage output of an ambient vibration based energy harvester. The output voltage increases linearly with the increase of single supply voltage input range 0.1 V to 0.5 V, to the output voltage range of 7 to 35 V. The optimum parameter found for 10 kΩ load is 100 μH inductor and 1μF load capacitor. A comparison of output performance of the boost circuit with existing literature is presented. The ease of the boost converter circuit will facilitate the development of an efficient piezoelectric energy harvesters for low power applications like automotive, healthcare portable devices, and wireless sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.