Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.
Generation of electric current is observed when GaAs nanowires with wurtzite crystal structure are bent by the probe of an atomic force microscope. The current originates from a piezo active phase in the nanowires due to the piezoelectric effect. Increasing of the piezo-potential in bent nanowires enhances tunneling through the probe-nanowire Schottky barrier due to the thermionic field emission. Laser illumination amplifies short-circuit current pulses by two orders of magnitude from 9 pA to 1 nA due to the piezo-phototronic effect. Utilization of such piezo-phototronic effect in GaAs nanowires is a solution to accelerate the efficiency of hybrid energy sources "piezoelectric nanogenerator À solar cell" comprised of III-V nanowires.
The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.