Generation of electric current is observed when GaAs nanowires with wurtzite crystal structure are bent by the probe of an atomic force microscope. The current originates from a piezo active phase in the nanowires due to the piezoelectric effect. Increasing of the piezo-potential in bent nanowires enhances tunneling through the probe-nanowire Schottky barrier due to the thermionic field emission. Laser illumination amplifies short-circuit current pulses by two orders of magnitude from 9 pA to 1 nA due to the piezo-phototronic effect. Utilization of such piezo-phototronic effect in GaAs nanowires is a solution to accelerate the efficiency of hybrid energy sources "piezoelectric nanogenerator À solar cell" comprised of III-V nanowires.
The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.
Abstract:Mixed-matrix membranes based on amorphous and semi-crystalline polyimides with zirconium dioxide (ZrO 2 ) nanostars were synthesized. Amorphous poly(4,4 -oxydiphenylenepyromellitimide) and semi-crystalline polyimide prepared from 1,4-bis(4-aminophenoxy)benzene and 4,4'-oxydiphthalic anhydride were used. The effect of ZrO 2 nanostars on the structure and morphology of nanocomposite membranes was studied by wide-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and contact angle measurements. Thermal properties and stability were investigated by thermogravimetric analysis and differential scanning calorimetry. Transport properties of hybrid membranes containing 5 wt % ZrO 2 were tested for pervaporation of a mixture of butanol-water with 10 wt % H 2 O content. It was found that a significant amount of the ZrO 2 added to the semi-crystalline polyimide is encapsulated inside spherulites. Therefore, the beneficial influence of inorganic filler on the selectivity of mixed-matrix membrane with respect to water was hampered. Mixed-matrix membranes based on amorphous polymer demonstrated the best performance, because water molecules had higher access to inorganic particles.
Multi-wall carbon nanotubes filled with iron nanoparticles were combined with polystyrene to evaluate interface interactions and nanotube orientation in composite using magnetic susceptibility measurements. Iron-containing species were introduced into MWCNT cavities as the result of catalytic chemical vapor deposition synthesis using ferrocene as a catalyst source. Polystyrene loaded with certain quantity of MWCNTs was uniaxially stretched to provide the nanotube alignment. Magnetic susceptibility measurements performed in three perpendicular directions of magnetic field confirmed the alignment in the stretching direction. The composites showed a large diamagnetic response in a magnetic field perpendicular to the nanotube axis and low response in a parallel field. In a quantitative sense, anisotropy exceeds by more than an order of magnitude the effect expected from intrinsic susceptibility of nanotubes. Apparently, the graphitic nature of the nanotube lattice results in strong non-covalent interactions with uniaxially stretched polymer matrix, and aromatic rings as side groups of polystyrene align parallel to the nanotube surface, contributing to strong diamagnetism. As magnetic susceptibility is a penetrative but non-destructive type of measurement, it can successfully characterize both the alignment of onedimensional or two-dimensional carbon allotropies and the arrangement of the macromolecules around them, contributing to the optimal design and performance of nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.