[1] We evaluated the spatial variation of Venusian surface emissivity at 1.18 mm wavelength and that of near-surface atmospheric temperature using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo NIMS observed the nightside thermal emission from the surface and the deep atmosphere of Venus, which is attenuated by scattering from the overlying clouds. To analyze the NIMS data, we used a radiative transfer model based on the adding method. Although there is still an uncertainty in the results owing to the not well known parameters of the atmosphere, our analysis revealed that the horizontal temperature variation in the near-surface atmosphere is no more than ±2 K on the Venusian nightside and also suggests that the majority of lowlands likely has higher emissivity compared to the majority of highlands. One interpretation for the latter result is that highland materials are generally composed of felsic rocks. Since formation of a large body of granitic magmas requires water, the presence of granitic terrains would imply that Venus may have had an ocean and a mechanism to recycle water into the mantle in the past.
The density and distribution of impact craters superposed on the highly deformed tessera terrain on Venus permit analysis of the amount and duration of deformation prior to the emplacement of the stratigraphically younger global volcanic plains. Eighty percent of tesserae craters are undefonned. No existing craters exhibit evidence of contractional deformation, suggesting that the early compressional stage of tessera deformation ended abruptly. The small number of craters fractured by late-stage tessera extension constrains the duration of this phase to less than 20% of the average crater retention age of the tesserae, or approximately 30 -60 Ma. These results suggest a geologically rapid decline in the magnitude of surface strain rates associated with the transition from the terminal stages of tessera compressional deformation to the eruption of the global volcanic plains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.