Methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) (MPEG-PCL) diblock copolymers were prepared by ring-opening polymerization and their phase transition behavior characterized as a function of temperature. The MPEG-PCL solutions formed a sol at room temperature, and underwent sol-to-gel followed by gel-to-sol phase transitions as the temperature was increased. The temperature range over which the solutions were in a gel state could be extended simply by increasing the PCL chain length in the diblock copolymer. Scanning electron microscopy (SEM) images of MPEG-PCL solutions in the sol and gel states revealed near-regular and irregular porous structures, respectively. in vitro culture of rat bone marrow stromal cells (rBMSCs) on gel surfaces exhibited mostly round cells after 1 day of incubation. SEM images of the attached cells clearly showed the cell body and anchoring filopodia. Injection of room-temperature diblock copolymer solutions into Sprague-Dawley rats produced a gel at body temperature. In situ gel-forming scaffolds in vivo were successfully fabricated by simple subcutaneous injection of MPEG-PCL diblock copolymer solutions. The gel implants retained their original shape for 4 weeks without in- flammation at the injection site. Gel implants removed after 4 weeks were found to be surrounded by a thin fibrous capsule consisting of fibroblasts and blood vessels cells. Hematoxylin and eosin (H&E) and von Kossa staining revealed bone formation in gel implants containing both rBMSCs and dexamethasone, with the degree of bone formation increasing markedly with increasing dexamethasone concentration. Thus, our results show that in situ gel scaffolds fabricated from MPEG-PCL diblock copolymer solutions containing dexamethasone enable multipotent rBMSCs to produce viable bone when injected into rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.