Nanoparticles, 10–14 nm, consisting of either Fe3O4 or Co0.2Fe2.8O4 stabilized with oleic acid, were prepared using solution combustion. Their structural and magnetic properties were examined using X-ray diffractometry, scanning electron microscopy, vibrating sample magnetometry, and Fourier-transform infrared spectroscopy. The properties of both sets of materials are similar, except that the cobalt-doped particles are considerably less magnetic. The in vitro inhibitory activities of the nanoparticles were assessed against pathogenic bacteria Shigella dysenteriae, Klebsiella pneumoniae, Acinetobacter baumannii, Streptococcus pyogenes, and pathogenic fungi and molds Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus. The magnetite nanoparticles were moderately effective against all tested pathogens, but the activity of the cobalt-doped nanoparticles was significantly lower, possibly due to an interruption of the Fenton reaction at the bacterial membrane. This work suggests that potentially doping magnetite with stronger metal oxidants may instead enhance their antimicrobial effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.