In post-disaster rehabilitation efforts, the availability of telecommunication facilities takes important role. However, the process to improve telecommunication facilities in disaster area is risky if it is done by humans. Therefore, a network method that can work efficiently, effectively, and capable to reach the widest possible area is needed. This research introduces a cluster-based routing protocol named Adaptive Cluster Based Routing Protocol (ACBRP) equipped by Ant Colony Optimization method, and its implementation in a simulator developed by author. After data analysis and statistical tests, it can be concluded that routing protocol ACBRP performs better than AODV and DSR routing protocol. Keywords: adaptive cluster based routing protocol (ACBRP), ant colony optimization, AODV, mobile ad-hoc network AbstrakPada upaya rehabilitasi pascabencana, ketersediaan fasilitas telekomunikasi memiliki peranan yang sangat penting. Namun, proses untuk memperbaiki fasilitas telekomunikasi di daerah bencana memiliki resiko jika dilakukan oleh manusia. Oleh karena itu, metode jaringan yang dapat bekerja secara efisien, efektif, dan mampu mencapai area seluas mungkin diperlukan. Penelitian ini memperkenalkan sebuah protokol routing berbasis klaster bernama Adaptive Cluster Based Routing Protocol (ACBRP), yang dilengkapi dengan metode Ant Colony Optimization, dan diimplementasikan pada simulator yang dikembangkan penulis. Setelah data dianalisis dan dilakukan uji statistik, disimpulkan bahwa protokol routing ACBRP beroperasi lebih baik daripada protokol routing AODV maupun DSR. Kata Kunci: adaptive cluster based routing protocol (ACBRP), ant colony optimization, AODV, mobile ad-hoc network
AbstrakPermasalahan search-and-safe merupakan salah satu contoh robot otonom dapat disimulasikan untuk menggantikan pekerjaan manusia di lingkungan berbahaya, misalnya pada kegiatan evakuasi manusia dari ruang tertutup yang terbakar. Dalam contoh ini, robot otonom harus dapat menemukan objek manusia untuk diselamatkan, serta objek api untuk dipadamkan. Lebih jauh lagi, untuk dapat menyelesaikan permasalahan seperti ini dengan baik, robot otonom harus dapat mengetahui keberadaannya, bukan hanya posisi dalam sistem koordinat global saja tetapi juga posisi relatif terhadap posisi tujuan dan keadaan lingkungan itu sendiri. Permasalahan ini kemudian dikenal juga sebagai lokalisasi yang menjadi bagian penting dari proses navigasi pada robot otonom. Salah satu metode yang dapat digunakan untuk menyelesaikan permasalahan lokalisasi adalah dengan menggunakan representasi internal peta lingkungan kerja dalam pengetahuan robot otonom. Pada kondisi ketika tidak tersedia informasi mengenai konfigurasi lingkungan, atau informasi yang tersedia sifatnya terbatas, robot harus dapat membangun sendiri representasi petanya dengan dibantu oleh komponen sensor yang dimilikinya. Pada paper ini kemudian dibahas salah satu metode yang dapat diterapkan dalam proses pembangunan peta seperti yang dijelaskan, yaitu melalui adopsi algoritma heuristic searching dan pruning yang sudah dikenal pada bidang kecerdasan buatan. Selain itu juga akan dijabarkan desain robot otonom yang digunakan, serta konfigurasi lingkungan yang digunakan pada studi kasus search-and-safe ini. Diharapkan nantinya hasil yang diperoleh dari penelitian ini dapat diterapkan untuk skala yang lebih besar.Kata kunci: lokalisasi robot, robot otonom bergerak, pembangunan peta, algoritma heuristic searching.
In a real-world environment, there are several difficult obstacles to overcome in classification. Those obstacles are data overlapping and skewness of data distribution. Overlapping data occur when many data from different classes overlap with each other; this condition often occurs when there are many classes in a data set. On other hand, skewness of data distribution occurs when the data distribution is not a Gaussian (normal) distribution. To overcome these two problems, a new method called Adaptive Fuzzy-Neuro Generalized Learning Vector Quantization using PI membership function (AFNGLVQ-PI) is proposed in this study. AFNGLVQ-PI is derived from Fuzzy-Neuro Generalized Learning Vector Quantization using the PI membership function (FNGLVQ-PI). In FNGLVQ-PI, the updated values for minimum and maximum variables in the fuzzy membership function are set based on the mean of the updated values. Whereas, in the newly proposed AFNGLVQ-PI, updated values for minimum, maximum, and mean variables are derived based on the differential equations to approximate the data distribution better. In this study, the newly proposed AFNGLVQ-PI algorithm was tested and verified on twelve different data sets. Two of the data sets are synthetic data sets where we could compare the performance of the data sets in different overlapping conditions and levels of skewness. The rest of the data sets were chosen and used as a benchmark to compare the performance of the proposed algorithm. In the experiment, AFNGLVQ-PI took first place in 18 out of 29 experiments. Furthermore, AFNGLVQ-PI also achieved positive improvements for all data sets used in the experiments, which could not be achieved by the Learning Vector Quantization (LVQ), Generalized Learning Vector Quantization (GLVQ), and other commonly used algorithms, such as SVM, kNN, and MLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.