Alexander MS, Flodin BW, Marigold DS. Prism adaptation and generalization during visually guided locomotor tasks. J Neurophysiol 106: 860 -871, 2011. First published May 25, 2011 doi:10.1152/jn.01040.2010.-The ability of individuals to adapt locomotion to constraints associated with the complex environments normally encountered in everyday life is paramount for survival. Here, we tested the ability of 24 healthy young adults to adapt to a rightward prism shift (ϳ11.3°) while either walking and stepping to targets (i.e., precision stepping task) or stepping over an obstacle (i.e., obstacle avoidance task). We subsequently tested for generalization to the other locomotor task. In the precision stepping task, we determined the lateral end-point error of foot placement from the targets. In the obstacle avoidance task, we determined toe clearance and lateral foot placement distance from the obstacle before and after stepping over the obstacle. We found large, rightward deviations in foot placement on initial exposure to prisms in both tasks. The majority of measures demonstrated adaptation over repeated trials, and adaptation rates were dependent mainly on the task. On removal of the prisms, we observed negative aftereffects for measures of both tasks. Additionally, we found a unilateral symmetric generalization pattern in that the left, but not the right, lower limb indicated generalization across the 2 locomotor tasks. These results indicate that the nervous system is capable of rapidly adapting to a visuomotor mismatch during visually demanding locomotor tasks and that the prism-induced adaptation can, at least partially, generalize across these tasks. The results also support the notion that the nervous system utilizes an internal model for the control of visually guided locomotion.
While walking performance is similar between groups in normal light, poor ambient lighting results in decreased foot placement accuracy in older adults with AMD. Improper foot placement while walking can lead to a fall and possible injury. Thus, to improve the mobility of those with AMD, strategies to enhance the environment in reduced lighting situations are necessary.
Minor AMD-specific changes in movement are seen during curb negotiation. However, attenuated lighting greatly impacts curb ascent and descent, regardless of eye disease, which manifests as a cautious walking strategy and may increase the risk of falling. Environmental enhancements that reduce the deleterious effects of poor lighting are required to improve mobility and quality of life of older adults, particularly those with AMD.
An understanding of the transfer (or generalization) of motor adaptations between legs and across tasks during walking has remained elusive due to limited research and mixed results. Here, we asked whether stepping sequences or task constraints introduced during walking prism-adaptation tasks influence generalization patterns. Forty subjects adapted to prism glasses in precision-walking or obstacle-avoidance tasks that required a specific stepping sequence to the center of two/three targets or laterally over an obstacle. We then tested for generalization, reflected by aftereffects in the nonadapted task. Our previous study using these tasks found that only one leg generalized. Here, we reversed the stepping sequence and found that only the opposite leg generalized in the subject group that adapted in a precision-walking task. The combination of stepping sequence and direction of prism shift caused subjects in two groups to collide with the obstacle early during adaptation, thus making the step prior to going over the obstacle more important. Both legs subsequently generalized. A fourth subject group experienced a three-target, precision-walking task, resulting in a balanced, right-left, left-right stepping sequence, meant to induce bilateral generalization. While only one leg generalized, foot placement aftereffects before stepping over the obstacle would have caused subjects to collide with it. Together with our previous study, the results suggest a contribution of stepping sequence during the adapted task on generalization patterns, likely driven by proprioceptive feedback. The results also support the idea that negative consequences during adaptation and/or perceived threat can influence generalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.