The public health risks associated with pathogens in urban stormwater have been well established, making it necessary to ensure adequate treatment of the stormwater before it is discharged into recreational water bodies or is harvested for reuse.Biofilters, also known as stormwater bioretention systems or raingardens, have shown promising, yet variable, results in reducing indicator bacteria in stormwater. Different biofilter design elements, such as filter media composition and vegetation type, have
Microbial communities play a vital role in nitrogen (N) removal in constructed wetlands (CWs). However, the lack of studies on microbial characteristics of wetland systems designed to treat stormwater demonstrates the importance of comprehensive investigation on microbial response to wetland fluctuations. Moreover, the observed inconsistency in N removal, and detected links between microbial shifts and wetland water level fluctuations is an area of research interest perculiar to stormwater applications. This study surveyed nearly 150 publications to provide a summary and evaluation of N removal efficiency in different types of CWs where microbial communities and their behavior have been correlated to regulating factors. Factors such as flow regime, plants, and physico-chemical properties (e.g., temperature, dissolved oxygen, pH, and nitrogen concentration) were found to significantly influence microbial diversity and composition. Although many studies have analyzed microbial N removal, a majority conducted their studies in bioretention systems. Accordingly, some of the microbial pathways in CWs designed for stormwater treatment have not been investigated. As such, it is suggested that pathways, such as dissimilatory nitrate reduction to ammonium (DNRA) and comammox activity and their changes over dry-wet cycles in stormwater constructed wetlands be investigated. This information could assist engineers to take advantage of the presence of other N transforming communities which could improve microbial diversity within wetland systems. Moreover, it is recommended to track microbial functional genes and their changes over wetland water fluctuation to develop an ecosystem with conditions favorable for microbial pathways with higher N removal potential. In conclusion, the findings of the current literature review reinforce the importance of stormwater runoff treatment and the implementation of new design strategies that are able to enhance microbial activity and diversity leading to a better treatment outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.