Objective To characterize cognitive and behavioral features, physical findings and brain atrophy patterns in pathology-proven corticobasal degeneration (CBD) and corticobasal syndrome (CBS) with known histopathology. Methods We reviewed clinical and MRI data in all patients evaluated at our center with either an autopsy diagnosis of CBD (n=18) or clinical CBS at first presentation with known histopathology (n=40). Atrophy patterns were compared using voxel-based morphometry. Results CBD was associated with four clinical syndromes: progressive nonfluent aphasia (5), behavioral variant frontotemporal dementia (5), executive-motor (7), and posterior cortical atrophy (1). Behavioral or cognitive problems were the initial symptoms in 15/18 patients; less than half exhibited early motor findings. Compared to controls, CBD patients showed atrophy in dorsal prefrontal and peri-rolandic cortex, striatum and brainstem (p<0.001 uncorrected). The most common pathologic substrates for clinical CBS were CBD (35%), Alzheimer’s disease (AD, 23%), progressive supranuclear palsy (13%), and frontotemporal lobar degeneration (FTLD) with TDP inclusions (13%). CBS was associated with perirolandic atrophy irrespective of underlying pathology. In CBS due to FTLD (tau or TDP), atrophy extended into prefrontal cortex, striatum and brainstem, while in CBS due to AD, atrophy extended into temporoparietal cortex and precuneus (p<0.001 uncorrected). Interpretation Frontal lobe involvement is characteristic of CBD, and in many patients frontal, not parietal or basal ganglia symptoms, dominate early-stage disease. CBS is driven by medial peri-rolandic dysfunction, but this anatomy is not specific to one single underlying histopathology. Antemortem prediction of CBD will remain challenging until clinical features of CBD are redefined, and sensitive, specific biomarkers are identified.
Accurately predicting the underlying neuropathological diagnosis in patients with behavioural variant frontotemporal dementia (bvFTD) poses a daunting challenge for clinicians but will be critical for the success of disease-modifying therapies. We sought to improve pathological prediction by exploring clinicopathological correlations in a large bvFTD cohort. Among 438 patients in whom bvFTD was either the top or an alternative possible clinical diagnosis, 117 had available autopsy data, including 98 with a primary pathological diagnosis of frontotemporal lobar degeneration (FTLD), 15 with Alzheimer's disease, and four with amyotrophic lateral sclerosis who lacked neurodegenerative disease-related pathology outside of the motor system. Patients with FTLD were distributed between FTLD-tau (34 patients: 10 corticobasal degeneration, nine progressive supranuclear palsy, eight Pick's disease, three frontotemporal dementia with parkinsonism associated with chromosome 17, three unclassifiable tauopathy, and one argyrophilic grain disease); FTLD-TDP (55 patients: nine type A including one with motor neuron disease, 27 type B including 21 with motor neuron disease, eight type C with right temporal lobe presentations, and 11 unclassifiable including eight with motor neuron disease), FTLD-FUS (eight patients), and one patient with FTLD-ubiquitin proteasome system positive inclusions (FTLD-UPS) that stained negatively for tau, TDP-43, and FUS. Alzheimer's disease was uncommon (6%) among patients whose only top diagnosis during follow-up was bvFTD. Seventy-nine per cent of FTLD-tau, 86% of FTLD-TDP, and 88% of FTLD-FUS met at least 'possible' bvFTD diagnostic criteria at first presentation. The frequency of the six core bvFTD diagnostic features was similar in FTLD-tau and FTLD-TDP, suggesting that these features alone cannot be used to separate patients by major molecular class. Voxel-based morphometry revealed that nearly all pathological subgroups and even individual patients share atrophy in anterior cingulate, frontoinsula, striatum, and amygdala, indicating that degeneration of these regions is intimately linked to the behavioural syndrome produced by these diverse aetiologies. In addition to these unifying features, symptom profiles also differed among pathological subtypes, suggesting distinct anatomical vulnerabilities and informing a clinician's prediction of pathological diagnosis. Data-driven classification into one of the 10 most common pathological diagnoses was most accurate (up to 60.2%) when using a combination of known predictive factors (genetic mutations, motor features, or striking atrophy patterns) and the results of a discriminant function analysis that incorporated clinical, neuroimaging, and neuropsychological data.
No abstract
FTLD-TDP subtypes have distinct clinical and neuroimaging features, highlighting the relevance of FTLD-TDP subtyping to clinicopathologic correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.