The frequency of horizontal transfers of transposable elements (HTTs) varies among the types of elements according to the transposition mode and the geographical and temporal overlap of the species involved in the transfer. The drosophilid species of the genus Zaprionus and those of the melanogaster, obscura, repleta, and virilis groups of the genus Drosophila investigated in this study shared space and time at some point in their evolutionary history. This is particularly true of the subgenus Zaprionus and the melanogaster subgroup, which overlapped both geographically and temporally in Tropical Africa during their period of origin and diversification. Here, we tested the hypothesis that this overlap may have facilitated the transfer of retrotransposons without long terminal repeats (non-LTRs) between these species. We estimated the HTT frequency of the non-LTRs BS and Helena at the genome-wide scale by using a phylogenetic framework and a vertical and horizontal inheritance consistence analysis (VHICA). An excessively low synonymous divergence among distantly related species and incongruities between the transposable element and species phylogenies allowed us to propose at least four relatively recent HTT events of Helena and BS involving ancestors of the subgroup melanogaster and ancestors of the subgenus Zaprionus during their concomitant diversification in Tropical Africa, along with older possible events between species of the subgenera Drosophila and Sophophora. This study provides the first evidence for HTT of non-LTRs retrotransposons between Drosophila and Zaprionus, including an in-depth reconstruction of the time frame and geography of these events.
BackgroundThe use of large-scale genomic analyses has resulted in an improvement of transposable element sampling and a significant increase in the number of reported HTT (horizontal transfer of transposable elements) events by expanding the sampling of transposable element sequences in general and of specific families of these elements in particular, which were previously poorly sampled. In this study, we investigated the occurrence of HTT events in a group of elements that, until recently, were uncommon among the HTT records in Drosophila – the Jockey elements, members of the LINE (long interspersed nuclear element) order of non-LTR (long terminal repeat) retrotransposons. The sequences of 111 Jockey families deposited in Repbase that met the criteria of the analysis were used to identify Jockey sequences in 48 genomes of Drosophilidae (genus Drosophila, subgenus Sophophora: melanogaster, obscura and willistoni groups; subgenus Drosophila: immigrans, melanica, repleta, robusta, virilis and grimshawi groups; subgenus Dorsilopha: busckii group; genus/subgenus Zaprionus and genus Scaptodrosophila).ResultsPhylogenetic analyses revealed 72 Jockey families in 41 genomes. Combined analyses revealed 15 potential HTT events between species belonging to different genera and species groups of Drosophilidae, providing evidence for the flow of genetic material favoured by the spatio-temporal sharing of these species present in the Palaeartic or Afrotropical region.ConclusionsOur results provide phylogenetic, biogeographic and temporal evidence of horizontal transfers of the Jockey elements, increase the number of rare records of HTT in specific families of LINE elements, increase the number of known occurrences of these events, and enable a broad understanding of the evolutionary dynamics of these elements and the host species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.