Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
BackgroundSeveral studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon Helena, of which only degenerate sequences have been shown to be present in some species (Drosophila melanogaster), whereas putatively active sequences are present in others (D. simulans). Combining experimental and population analyses with the sequence analysis of the 12 Drosophila genomes, we have investigated the evolution of Helena, and propose a possible scenario for the evolution of this element.ResultsWe show that six species of Drosophila have the Helena transposable element at different stages of its evolution. The copy number is highly variable among these species, but most of them are truncated at the 5' ends and also harbor several internal deletions and insertions suggesting that they are inactive in all species, except in D. mojavensis in which quantitative RT-PCR experiments have identified a putative active copy.ConclusionOur data suggest that Helena was present in the common ancestor of the Drosophila genus, which has been vertically transmitted to the derived lineages, but that it has been lost in some of them. The wide variation in copy number and sequence degeneration in the different species suggest that the evolutionary dynamics of Helena depends on the genomic environment of the host species.
The history of transposable elements over evolutionary time can often be partially reconstructed on the basis of genome analysis. In this study, we identified and extensively characterized the NLTR BS retrotransposon in 12 sequenced Drosophila genomes, by its sequence diversity within and among genomes, its degeneration pattern and its transcriptional activity. We show that the BS element has a variable copy number and patchy distribution within the Drosophila genus, that it is at distinct stages of the evolutionary cycle in the different Drosophila species and that its evolution is characterized by vertical transmission and by bursts of transposition in certain species.
The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.