Background De novo mutations arising in the germline are a source of genetic variation and their discovery broadens our understanding of genetic disorders and evolutionary patterns. Although the number of de novo single nucleotide variants (dnSNVs) has been studied in a number of species, relatively little is known about the occurrence of de novo structural variants (dnSVs). In this study, we investigated 37 deeply sequenced pig trios from two commercial lines to identify dnSVs present in the offspring. The identified dnSVs were characterised by identifying their parent of origin, their functional annotations and characterizing sequence homology at the breakpoints. Results We identified four swine germline dnSVs, all located in intronic regions of protein-coding genes. Our conservative, first estimate of the swine germline dnSV rate is 0.108 (95% CI 0.038–0.255) per generation (one dnSV per nine offspring), detected using short-read sequencing. Two detected dnSVs are clusters of mutations. Mutation cluster 1 contains a de novo duplication, a dnSNV and a de novo deletion. Mutation cluster 2 contains a de novo deletion and three de novo duplications, of which one is inverted. Mutation cluster 2 is 25 kb in size, whereas mutation cluster 1 (197 bp) and the other two individual dnSVs (64 and 573 bp) are smaller. Only mutation cluster 2 could be phased and is located on the paternal haplotype. Mutation cluster 2 originates from both micro-homology as well as non-homology mutation mechanisms, where mutation cluster 1 and the other two dnSVs are caused by mutation mechanisms lacking sequence homology. The 64 bp deletion and mutation cluster 1 were validated through PCR. Lastly, the 64 bp deletion and the 573 bp duplication were validated in sequenced offspring of probands with three generations of sequence data. Conclusions Our estimate of 0.108 dnSVs per generation in the swine germline is conservative, due to our small sample size and restricted possibilities of dnSV detection from short-read sequencing. The current study highlights the complexity of dnSVs and shows the potential of breeding programs for pigs and livestock species in general, to provide a suitable population structure for identification and characterisation of dnSVs.
De novo mutations arising in the germline add to genetic variation. The number of de novo mutations occurring every generation, especially structural variants, has not been well studied in most species, including livestock. We used whole-genome sequencing from 46 pig trios from two commercial lines to identify de novo structural variants (dnSVs) present in the offspring. We characterised these dnSV by identifying their parent-of-origin, predicting their causal mechanisms, and identifying their functional annotations. We identified four dnSVs, including two clusters of mutations. One of these clusters contained a deletion, and three duplications, one of which was inverted. This cluster was the only dnSV that could be phased and was located in the paternal haplotype of the proband. All four identified dnSVs were located within the introns of genes. Our study is the first of its kind to identify and characterise dnSVs using whole genome shotgun sequence data in pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.