We have examined the effects of endothelin (ET) on the renal microcirculation by in vivo microscopy using the model of the split hydronephrotic rat kidney. ET, a potent vasoconstrictor peptide synthesized by vascular endothehal cells, showed marked and long-lasting effects on glomerular blood flow and vessel diameters in various segments of the renal vascular bed. Intravenously applied ET (100 ng/min/kg) increased systemic blood pressure from 123 ± 7 to 156 ± 4 mm Hg, decreased glomerular blood flow by 70%, and preferentially constricted larger preglomerular vessels, e.g. the arcuate artery. The competitive leukotriene antagonist FPL55712 significantly attenuated the vascoconstrictor response of the larger vessels. Local ET adminstration decreased glomerular blood flow in a dose-dependent manner (50% reduction at a concentration of 2.6 ± 0.7 · 10-9M) and constricted smaller vessel segments, e.g. the afferent and efferent arterioles near the glomerulus. The constriction induced by ET was not significantly affected by the Ca2+ channel blocker nitrendipine (2.8 · 10-6 to 1.1 · 10-5M). We conclude that intravenous ET effects are probably mediated by leukotrienes, inducing constriction of larger renal vessels. Locally administered ET acts directly on the renal vasculature, especially on smaller vessels.
Histological, ultrastructural, immunohistochemical, intravital microscopic and electrophysiological techniques have been applied to study experimental hydronephrosis in rats in order to assess its value as a preparation for the investigation of renal microcirculation and of the electrophysiological properties of the renin-containing juxtaglomerular (JG) cells of the afferent glomerular arteriole. As hydronephrosis develops, the kidney parenchyma becomes progressively thinner owing to tubular atrophy. Twelve weeks after ureteral ligature, this process results in a transparent tissue sheet of about 150-200 microns in thickness. In this preparation, the renal arterial tree as well as the glomeruli can be easily visualized for intravital microscopic studies, e.g. the determination of kidney vessel diameters, or the identification of JG cells for penetration with an intracellular microelectrode. In contrast to the tubular atrophy, the vascular system is well preserved, and the JG cells and the sympathetic axon terminals are ultrastructurally intact. This is also true for the glomeruli, except for a certain confluence of the podocyte foot processes and a thickening of the basal laminae. Renin immunostaining and kidney renin content in the hydronephrotic organ correspond to those in control kidneys. In addition, there are no differences in the plasma renin levels of hydronephrotic and control rats. Intravital microscopic observations reveal that the renal vascular tree reacts in a typical, concentration dependent manner to the vasoconstrictor agent angiotensin II, mainly at the level of the resistance vessels. Electrophysiological recordings from juxtaglomerular granulated cells show a high membrane potential (-60 mV), and spontaneous depolarizing junction potentials, owing to random transmitter release from the nerve terminals. Angiotensin II, an inhibitor of renin release, depolarizes JG cells reversibly. Hence, we may infer that the hydronephrotic rat kidney is a suitable model for in vivo studies of the renal microcirculation as well as for in vitro investigations of the electrophysiological properties of the media cells of the afferent glomerular arteriole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.