A low mass standard model Higgs boson should be visible at the Large Hadron Collider through its production via gluon-gluon fusion and its decay to two photons. We compute the interference of this resonant process, gg-->H-->gammagamma, with the continuum QCD background, gg-->gammagamma, induced by quark loops. Helicity selection rules suppress the effect, which is dominantly due to the imaginary part of the two-loop gg-->gammagamma scattering amplitude. The interference is destructive, but only of order 5% in the standard model, which is still below the 10%-20% present accuracy of the total cross section prediction. We comment on the potential size of such effects in other Higgs models.
This paper explores several aspects of the adiabatic quantum computation
model. We first show a way that directly maps any arbitrary circuit in the
standard quantum computing model to an adiabatic algorithm of the same depth.
Specifically, we look for a smooth time-dependent Hamiltonian whose unique
ground state slowly changes from the initial state of the circuit to its final
state. Since this construction requires in general an n-local Hamiltonian, we
will study whether approximation is possible using previous results on ground
state entanglement and perturbation theory. Finally we will point out how the
adiabatic model can be relaxed in various ways to allow for 2-local partially
adiabatic algorithms as well as 2-local holonomic quantum algorithms.Comment: Version accepted by and to appear in Phys. Rev.
Contractor Renormalization (CORE) is a numerical renormalization method for Hamiltonian systems that has found applications in particle and condensed matter physics. There have been few studies, however, on further understanding of what exactly it does and its convergence properties. The current work has two main objectives. First, we wish to investigate the convergence of the cluster expansion for a two-dimensional Heisenberg Antiferromagnet(HAF). This is important because the linked cluster expansion used to evaluate this formula non-perturbatively is not controlled by a small parameter. Here we present a study of three different blocking schemes which reveals some surprises and in particular, leads us to suggest a scheme for defining successive terms in the cluster expansion. Our second goal is to present some new perspectives on CORE in light of recent developments to make it accessible to more researchers, including those in Quantum Information Science. We make some comparison to entanglement-based approaches and discuss how it may be possible to improve or generalize the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.