We modified the optical properties of organic semiconductor distributed feedback lasers by introducing a high refractive index layer consisting of tantalum pentoxide between the substrate and the active material layer. A thin film of tris-(8-hydroxyquinoline) aluminium doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran was used as the active layer. By varying the intermediate layer thickness we could change the effective refractive index of the guided laser mode and thus the laser wavelength. With this technique we were able to tune the laser emission range between 613 nm and 667 nm. For high index layer thicknesses higher than 40 nm the laser operated on the TE(1)-mode rather than the fundamental TE(0)-mode.
We use a pulsed, frequency tripled picosecond Nd:YAG laser for holographic ablation to pattern a surface relief grating into an organic semiconductor guest-host system. The resulting second order distributed feedback lasers exhibit laser action with laser thresholds being comparable to those obtained with resonators structured by standard lithographic techniques. The details of the interference ablation of tris-(8-hydroxyquinoline) aluminum (Alq(3)) doped with the laser dye 4- dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) are presented and discussed. Lasing action is demonstrated at a wavelength of 646.6 nm, exploiting second order Bragg reflection in a relief grating with a period of 399 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.