Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic variability of Aureobasidium pullulans strains originating from the Arctic and strains originating pan-globally, a multilocus molecular analysis was performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and partial introns and exons of genes encoding β-tubulin (TUB), translation elongation factor (EF1α) and elongase (ELO). Two globally ubiquitous varieties were distinguished: var. pullulans, occurring particularly in slightly osmotic substrates and in the phyllosphere; and var. melanogenum, mainly isolated from watery habitats. Both varieties were commonly isolated from the sampled Arctic habitats. However, some aureobasidium-like strains from subglacial ice from three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to represent a new variety of A. pullulans. A strain from dolomitic marble in Namibia was found to belong to yet another variety. No molecular support has as yet been found for the previously described var. aubasidani. A partial elongase-encoding gene was successfully used as a phylogenetic marker at the (infra-)specific level.
The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were selected on the basis of the origins of previously isolated strains, and on the basis of physiological properties of the species, which also determined a selective isolation protocol. The species was absent from outdoor environments in the temperate climate, but present at low abundance in comparable habitats in the tropics. Positive outdoor sites particularly included faeces of frugivorous birds and bats, in urban as well as in natural areas. Tropical fruits were found E. dermatitidis positive at low incidence. Of the human-made environments sampled, railway ties contaminated by human faeces and oily debris in the tropics were massively positive, while the known abundance of the fungus in steam baths was confirmed. On the basis of the species' oligotrophy, thermotolerance, acidotolerance, moderate osmotolerance, melanization and capsular yeast cells a natural life cycle in association with frugivorous animals in foci in the tropical rain forest, involving passage of living cells through the intestinal tract was hypothesized. The human-dominated environment may have become contaminated by ingestion of wild berries carrying fungal propagules
During the past four decades, seven patients were documented in China to have died from Exophiala infections. Causative agents were Exophiala dermatitidis, Exophiala spinifera, Exophiala jeanselmei and a new Exophiala species, Exophiala asiatica. We retrospectively analysed the clinical characteristics of these infections in China and confirmed the identity of aetiological agents of Chinese fatal cases using rDNA ITS sequence analysis. While E. dermatitidis displayed neurotropism, E. spinifera showed osteotropism. The other two species, E. jeanselmei and E. asiatica had caused brain infections in China.
The in vitro activities of eight antifungal agents were determined against clinical (n = 63 genotype A, n = 3 genotype B) and environmental (n = 2 genotype A, n = 13 genotype B) strains of Exophiala dermatitidis. The resulting MIC(90)s for all strains (N = 81) were, in increasing order, as follows: posaconazole, 0.125 μg/ml; itraconazole, 0.25 μg/ml; voriconazole, 0.5 μg/ml; amphotericin B, 0.5 μg/ml; isavuconazole, 1 μ/ml; caspofungin, 8 μg/ml; anidulafungin, 8 μg/ml and fluconazole, 16 μg/ml. There were no significant differences in the patterns of susceptibility between genotypes A and B, environmental and clinical strains, isolates recovered from cutaneous and deep locations and strains from different geographical areas (P > 0.05). The difference in the MIC(90)s between each of these groups was not more than one dilution. The present study demonstrated that, based on in vitro activity, posaconazole and itraconazole have the highest activity against this fungus. In addition, voriconazole and the experimental broad-spectrum antifungal triazole, isavuconazole, both of which are available as intravenous preparations, have adequate activity against E. dermatitidis. However, in vivo efficacy remains to be determined.
Fusarium species are emerging causative agents of superficial, cutaneous and systemic human infections. In a study of the prevalence and genetic diversity of 464 fungal isolates from a dermatological ward in Thailand, 44 strains (9.5%) proved to belong to the genus Fusarium. Species identification was based on sequencing a portion of translation elongation factor 1-alpha (tef1-α), rDNA internal transcribed spacer and RNA-dependent polymerase subunit II (rpb2). Our results revealed that 37 isolates (84%) belonged to the Fusarium solani species complex (FSSC), one strain matched with Fusarium oxysporum (FOSC) complex 33, while six others belonged to the Fusarium incarnatum-equiseti species complex. Within the FSSC two predominant clusters represented Fusarium falciforme and recently described F. keratoplasticum. No gender differences in susceptibility to Fusarium were noted, but infections on the right side of the body prevailed. Eighty-nine per cent of the Fusarium isolates were involved in onychomycosis, while the remaining ones caused paronychia or severe tinea pedis. Comparing literature data, superficial infections by FSSC appear to be prevalent in Asia and Latin America, whereas FOSC is more common in Europe. The available data suggest that Fusarium is a common opportunistic human pathogens in tropical areas and has significant genetic variation worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.