a b s t r a c tA novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name "heat mat" and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system.
In recent years, the use of wickless heat pipes (thermosyphons) in heat exchangers has been on the rise, particularly in gas to gas heat recovery applications due to their reliability and the level of contingency they offer compared to conventional heat exchangers. Recent technological advances in the manufacturing processes and production of gravity assisted heat pipes (thermosyphons) have resulted in significant improvements in both quality and cost of industrial heat pipe heat exchangers. This in turn has broadened the potential for their usage in industrial waste heat recovery applications. In this paper, a tool to predict the performance of an air to air thermosyphon based heat exchanger using the ε-NTU method is explored. This tool allows the predetermination of variables such as the overall heat transfer coefficient, effectiveness, pressure drop and heat exchanger duty according to the flow characteristics and the thermosyphons configuration within the heat exchanger. The new tool's predictions were validated experimentally and a good correlation between the theoretical predictions and the experimental data, was observed.
Photovoltaic-thermal water collectors have the ability to convert solar energy into electricity and heat, simultaneously. Furthermore, the combination of photovoltaic-thermal solar collectors with a water cooling system can increase significantly the electrical and thermal efficiencies of the system, which can improve the total thermal efficiency of buildings. In this paper, the findings of six experimental configurations of solarthermal collectors are presented and analysed. Five of the solar-thermal panel configurations were implemented with a cooling cycle. Two of the solar-thermal panels were equipped with monocrystalline silicon modules, the other two collectors were equipped with polycrystalline silicone modules, one of the collectors was based on heat pipe technology and was equipped with a cooling system, while the last collector did not include any cooling cycle. The duration of the experiments was four days during the September of 2014 and they were conducted under different solar radiation conditions. The second part of the paper presents the simulation results for five of the solar-thermal panels connected with a cooling water tank (volume of 500 litre), a domestic hot water tank (volume 350 litre) and a water-water heat pump, in terms of covering the hot water demands of a single family dwelling. The results showed that the hybrid solar collectors would be able to cover approximately 60% of the dwelling's hot water needs for days with low levels of solar radiation, while for days with high solar radiation they could cover the hot water requirements of the family by 100%.
Abstract. The energy efficiency of air-to-water heat pumps used for central heating depends significantly on the correctness of the device choice. Under given climate conditions, the temperature of the bivalent point defines the amount of energy supplied from an additional source, usually an electric heater, in periods when the power of the heat pump is too low. Commonly overlooked fact is that excess capacity is also unfavourable and has significant, negative impact on the energy efficiency of such a system. In the article, basing on the measurement data of the real installation of the air-to-water heat pump, a significant decrease in the energy efficiency of the device during periods of low energy demand was shown. The average monthly value of SCOP in the warm months was similar or even lower than in the winter months. The reason of this is the operation of the device under partial load. Although the values of COP were very high in short periods of operation, frequent switching on and off of the heat pump reduced its energy efficiency. Also, the length of operation in stand-by mode, i.e. the length of the periods between successive heating cycles, had negative influence on energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.