There is a considerable diversity of district heating (DH) technologies, components and interaction in EU countries. The trends and developments of DH are investigated in this paper. Research of four areas related to DH systems and their interaction with: fossil fuels, renewable energy (RE) sources, energy efficiency of the systems and the impact on the environment and the human health are described in the following content. The key conclusion obtained from this review is that the DH development requires more flexible energy systems with building automations, more significant contribution of RE sources, more dynamic prosumers' participation, and integration with mix fuel energy systems, as part of smart energy sustainable systems in smart cities. These are the main issues that Europe has to address in order to establish sustainable DH systems across its countries.
a b s t r a c tA novel flat heat pipe design has been developed and utilised as a building envelope and thermal solar collector with and without (PV) bonded directly to its surface. The design of the new solar collector has been validated through full scale testing in Cardiff, UK where solar/thermal, uncooled PV and PV/T tests were carried out on three identical systems, simultaneously. The tests showed a solar/thermal energy conversion efficiency of around 64% for the collector with no PV and 50% for the system with the PV layer on it. The effect of cooling on the solar/electrical energy conversion efficiency was also investigated and an efficiency increase of about 15% was recorded for the cooled PV system due to the provided homogenous cooling. The new flat heat pipe solar collector is given the name "heat mat" and, in addition to being an efficient solar collector type, it is also designed to convert a building envelope materials to become energy-active. A full size roof that utilise this new building envelope material is reported in this paper to demonstrate the way this new collector is integrated as a building envelope material to form a roof. A thermal absorption test, in a controlled environment, from the ambient to the heat mat with no solar radiation is also reported. The test has proved the heat mat as an efficient thermal absorber from the ambient to the intermediate fluid that deliver the heat energy to the heat pump system.
The purpose of the paper is to investigate the challenges in modeling the energy losses of heating networks and to analyse the factors that influence them. The verification of the simulation was conducted on a test stand in-situ and based on the measurements of the testing station, a database for the final version of the numerical model was developed and a series of simulations were performed. Examples of the calculated results are shown in the graphs. The paper presents an innovative method of identify the energy losses of underground heating network pipelines and quantify the temperature distribution around them, in transient working conditions. The presented method makes use of numerical models and measured data of actual objects.The dimensions of the pipelines used were six meters wide, eight meters high and one meter in depth, while they were simulated under conditions of zero heat flow in the ground, in the perpendicular to the sides direction of the calculated area and considering the effects of ground's thermal conductivity. The mesh was developed using advanced functions, which resulted its high quality with the average orthogonal quality of 0.99 (close to 1.00) and Skewness of 0.05 (between 0.00 and 0.25). To achieve better accuracy of the simulation model, the initial conditions were determined based on the numerical results of a three-dimensional analysis of heat losses, in steady state conditions in a single moment. The validation process confirmed the high quality of the model, as the differences between the ground temperatures were approximately 0.1 °C.
Photovoltaic-thermal water collectors have the ability to convert solar energy into electricity and heat, simultaneously. Furthermore, the combination of photovoltaic-thermal solar collectors with a water cooling system can increase significantly the electrical and thermal efficiencies of the system, which can improve the total thermal efficiency of buildings. In this paper, the findings of six experimental configurations of solarthermal collectors are presented and analysed. Five of the solar-thermal panel configurations were implemented with a cooling cycle. Two of the solar-thermal panels were equipped with monocrystalline silicon modules, the other two collectors were equipped with polycrystalline silicone modules, one of the collectors was based on heat pipe technology and was equipped with a cooling system, while the last collector did not include any cooling cycle. The duration of the experiments was four days during the September of 2014 and they were conducted under different solar radiation conditions. The second part of the paper presents the simulation results for five of the solar-thermal panels connected with a cooling water tank (volume of 500 litre), a domestic hot water tank (volume 350 litre) and a water-water heat pump, in terms of covering the hot water demands of a single family dwelling. The results showed that the hybrid solar collectors would be able to cover approximately 60% of the dwelling's hot water needs for days with low levels of solar radiation, while for days with high solar radiation they could cover the hot water requirements of the family by 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.