The sex differences in the number and morphometric parameters of motoneurons in motor nuclei are poorly known. The aim of this study was to determine the differences in the number and size of alpha and gamma motoneurons of the medial gastrocnemius (MG) muscle in male and female Wistar rats. Retrogradely labelled cell bodies of motoneurons of 6 months old animals were studied following a bath of the proximal stump of the transected MG nerve in a horseradish peroxidase solution. The number and soma diameters of male and female MG motoneurons were determined from serial microscopic images of sections. The weight of the brain and spinal cord was on average 17% higher in males than in females. The mean number of motoneurons was 13% higher in males than in females and amounted to 94 and 83 motoneurons, respectively. In each case, the average soma diameters and cross-section areas of motoneurons in motor nucleus were distributed bimodally: motoneurons smaller than 27.5 μm in diameter were recognized as gamma and greater ones as alpha motoneurons. In males, the motor nucleus contained on the average 66 alpha motoneurons, whereas in females, 56 alpha motoneurons, that is the mean number of alpha motoneurons was 17% higher in males. Moreover, the soma diameters of gamma and alpha motoneurons were significantly bigger in males and the difference amounted 9 and 6%, respectively. It is concluded that the number as well as size of alpha and size of gamma motoneurons in the MG motor nucleus are greater in males.
The rat medial gastrocnemius (MG) muscle is composed of the proximal and distal compartments. In this study, morphometric properties of the compartments and their muscle fibres at five levels of the muscle length and the innervation pattern of these compartments from lumbar segments were investigated. The size and number of muscle fibres in the compartments were different. The proximal compartment at the largest cross section (25% of the muscle length) had 34% smaller cross-sectional area but contained a slightly higher number of muscle fibres (max. 5521 vs. 5360) in comparison to data for the distal compartment which had the largest cross-sectional area at 40% of the muscle length. The muscle fibre diameters revealed a clear tendency within both compartments to increase along the muscle (from the knee to the Achilles tendon) up to 46.9 μm in the proximal compartment and 58.4 μm in the distal one. The maximal tetanic and single twitch force evoked by stimulation of L4, L5, and L6 ventral roots in whole muscle and compartments were measured. The MG was innervated from L4 and L5, only L5, or L5 and L6 segments. The proximal compartment was innervated by axons from L5 or L5 and L4, and the distal one from L5, L5 and L6, or L5 and L4 segments. The forces produced by the compartments summed non-linearly. The tetanic forces of the proximal and distal compartments amounted to 2.24 and 4.86 N, respectively, and their algebraic sums were 11% higher than the whole muscle force (6.37 N).
When a muscle innervation originates from more than one spinal cord segment, the injury of one of the respective ventral roots evokes an overload, and alters the activity and properties of the remaining motor units. However, it is not well documented if the three types of motor units are equally represented within the innervating ventral roots. Single motor units in the rat medial gastrocnemius muscle were studied and their contractile properties as well as distribution of different types of motor units belonging to subpopulations innervated by axons in L4 and L5 ventral roots were analyzed. The composition of the three physiological types of motor units in the two subpopulations was similar. Force parameters were similar for motor units belonging to the two subpopulations. However, the twitch time parameters were slightly longer in L4 in comparison to L5 motor units although the difference was significant only for fast resistant to fatigue motor units. The force-frequency relationships in the two subpopulations of motor units were not different. Concluding, the two subpopulations of motor units in the studied muscle differ in the number of motor units, but contain similar proportions of the three physiological types of these units and their contractile properties are similar. Therefore, the injury of one ventral root evokes various degrees of muscle denervation, but is non-selective in relation to the three types of motor units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.