Although accelerated atherosclerosis and arteriosclerosis are common in patients with renal failure, the pathogenesis of these changes is poorly understood. Parathyroid hormone (PTH) levels are elevated in renal failure, and have been linked to uraemic vascular changes in some studies. We examined the in vitro effects of increasing doses of the 1–34 fragment of PTH on human aortic vascular smooth muscle cells (VSMCs). Factors examined were: (1) collagen production using tritiated hydroxyproline incorporation and transcription of procollagen α1(I) mRNA; (2) change in the surface area of collagen I lattices; (3) mRNA transcription of the collagen binding protein β1 integrin; (4) proliferation using tritiated thymidine incorporation, and (5) methyl tetrazolium salt conversion to estimate live cell number after 5 days’ exposure to PTH. PTH at a concentration of 200 pmol/l increased total collagen synthesis (188 ± 25% of control, p < 0.01) as well as transcription of procollagen α1(I) mRNA (136 ± 11% of control, p < 0.005). PTH also increased reorganisation of collagen I lattices (surface area 47 ± 8% of well for control vs. 35.7 ± 2.5 and 34.3 ± 3.0% for PTH 100 and 200 pmol/l, respectively, p = 0.02) and upregulated β1 integrin mRNA expression (160 ± 20% of control at PTH concentration of 200 pmol/l, p < 0.05). PTH had no effect on VSMC proliferation or number at doses up to 200 pmol/l. In conclusion, PTH increases production and reorganisation of collagen by VSMCs in vitro. It is possible that more aggressive control of hyperparathyroidism in patients with renal failure may help to reduce the burden of cardiovascular disease in this patient population.
As several studies indirectly suggest that inhibiting the intracellular breakdown of cyclic nucleotides may inhibit fibrogenesis, this study used membrane permeable cyclic nucleotide analogues to examine the role of cAMP and cGMP signaling pathways in the regulation of renal fibroblast function. Fibroblasts were isolated by explant outgrowth culture of rat kidneys post unilateral ureteric obstruction. Subcultured cells were exposed to 10– 1,000 µM of the cyclic nucleotide analogues 8-bromo-cAMP (8br-cAMP) and 8-bromo-cGMP (8br-cGMP). Functional parameters examined included mitogenesis (thymidine incorporation), collagen synthesis (proline incorporation), myofibroblast differentiation (Western blotting for α-smooth muscle actin; α-SMA) and expression of CTGF (Northern blotting), a TGF-β1-driven immediate early response gene. Serum-stimulated mitogenesis was decreased 27 ± 4% by 100 µM 8br-cAMP (p < 0.01), 49 ± 6% by 1,000 µM 8br-cAMP (p < 0.001) and 43 ± 7% by 1,000 µM 8br-cGMP (p < 0.01). 1,000 µM 8br-cAMP and 8br-cGMP reduced basal collagen synthesis by 80 ± 5 and 60 ± 21% respectively (both p < 0.05). Maximum dose of 8br-cAMP but not 8br-cGMP inhibited basal expression of the differentiation marker α-SMA by 43 ± 33 (p < 0.05), resulted in a more rounded cell morphology and reduced expression of CTGF by 39 ± 24% (p < 0.05). Measurement of mitochondrial activity confirmed that effects were independent of cell toxicity. In conclusion, cyclic nucleotides inhibit fibrogenesis in vitro. Strategies which elevate intracellular cyclic nucleotide concentrations may therefore be therapeutically valuable in preventing the proliferation and activation of fibroblasts in progressive renal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.