In medical and health studies, heterogeneities in clustered count data have been traditionally modeled by positive random effects in Poisson mixed models; however, excessive zeros often occur in clustered medical and health count data. In this paper, we consider a three-level random effects zero-inflated Poisson model for health-care utilization data where data are clustered by both subjects and families. To accommodate zero and positive components in the count response compatibly, we model the subject level random effects by a compound Poisson distribution. Our model displays a variance components decomposition which clearly reflects the hierarchical structure of clustered data. A quasi-likelihood approach has been developed in the estimation of our model. We illustrate the method with analysis of the health-care utilization data. The performance of our method is also evaluated through simulation studies.
Analysis of longitudinal data with excessive zeros has gained increasing attention in recent years; however, current approaches to the analysis of longitudinal data with excessive zeros have primarily focused on balanced data. Dropouts are common in longitudinal studies; therefore, the analysis of the resulting unbalanced data is complicated by the missing mechanism. Our study is motivated by the analysis of longitudinal skin cancer count data presented by Greenberg, Baron, Stukel, Stevens, Mandel, Spencer, Elias, Lowe, Nierenberg, Bayrd, Vance, Freeman, Clendenning, Kwan, and the Skin Cancer Prevention Study Group[New England Journal of Medicine 323, 789-795]. The data consist of a large number of zero responses (83% of the observations) as well as a substantial amount of dropout (about 52% of the observations). To account for both excessive zeros and dropout patterns, we propose a pattern-mixture zero-inflated model with compound Poisson random effects for the unbalanced longitudinal skin cancer data. We also incorporate an autoregressive of order 1 correlation structure in the model to capture longitudinal correlation of the count responses. A quasi-likelihood approach has been developed in the estimation of our model. We illustrated the method with analysis of the longitudinal skin cancer data.
Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the specifications of random effects distributions; therefore, the corresponding inferences are sometimes sensitive to the choice of random effect distributions under certain circumstance. In this paper, we incorporate serially dependent distribution-free random effects into Tweedie generalized linear models to accommodate a wide range of skewness and covariance structures for discrete and continuous longitudinal data. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of random effects. Our approach unifies population-averaged and subject-specific inferences. Our method is illustrated through the analyses of patient-controlled analgesia data and Framingham cholesterol data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.