Experimental results of temperature-, electric field-, and hydrostatic-pressureinduced effects in solid-core highly birefringent photonic liquid crystal fibers are presented. Selective infiltration of the photonic crystal fibers with liquid crystals was found to induce birefringence axes switching resulting in a variety of tunable photonic liquid crystal fibersbased devices.
Axial and transversal orientational configurations of a nematic liquid crystal 6CHBT are realized inside glassy cylindrical capillaries by using photoalignment technique. It is demonstrated that this principle can be effectively used to enforce liquid crystal alignment in the desirable direction. It can be applied to control liquid crystal alignment in the photonic crystal fibers showing great potential for the modern telecommunication technologies.
Composite structures are made of two or more components with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing optical fiber sensors into the composite material. These sensors can demonstrate stress distribution inside tested material influenced by external tensions. Two types of the optical fiber sensors are used as the 3D structure. One of them is based on application of fiber Bragg grating inside the core of the fiber. Longitudinal stress changes parameters of the Bragg grating and simultaneously, spectral characteristics of the light transmitted through the fiber. The second one is based on application of highly birefringent fibers which, under external stress, introduce polarization changes of the output light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.