Compression and ignition of deuterium-tritium fuel under conditions relevant to the scheme of fast ignition by laser generated proton beams ͓Roth et al., Phys. Rev. Lett. 86, 436 ͑2001͔͒ are studied by numerical simulation. Compression of a fuel containing spherical capsule driven by a pulse of thermal radiation is studied by a one-dimensional radiation hydrodynamics code. Irradiation of the compressed fuel by an intense proton beam, generated by a target at distance d from the capsule center, and subsequent ignition and burn are simulated by a two-dimensional code. A robust capsule, absorbing 635 kJ of 210 eV ͑peak͒ thermal x rays, with fusion yield of almost 500 MJ, has been designed, which could allow for target gain of 200. On the other hand, for a reasonable proton spectrum the required proton beam energy E ig , exceeds 25 kJ ͑for dϭ4 mm͒, even neglecting beam losses in the hohlraum and assuming that the beam can be focused on a spot with radius of 10 m. The effects of proton range lengthening due to the increasing plasma temperature and of beam temporal spread caused by velocity dispersion are discussed. Ways to reduce E ig to about 10 kJ are discussed and analyzed by simulations.
The main parameters of the beam required to ignite a precompressed DT fuel, as foreseen by the recently proposed scheme of fast ignition by laser-accelerated protons (Roth et al 2001 Phys. Rev. Lett. 86 436), are studied by 2-D numerical simulations and a simple model. For simplicity, instantaneous proton generation at distance d from the compressed fuel and exponential proton energy spectrum, dn/dε∝exp (-ε/Tp), are assumed. An analytical expression and parametric numerical results are then given for the dependence of the minimum required beam energy on d, Tp and on the fuel density ρ. For the parameters of Roth et al (d≈4 mm; ρ≈400 g/cm3) the minimum total proton energy for ignition is about 40 kJ.
Fusion fast ignition (FI) initiated by laser-driven ion beams is a promising concept examined in this paper. FI based on a beam of quasi-monoenergetic ions (protons or heavier ions) has the advantage of a more localized energy deposition, which minimizes the required total beam energy, bringing it close to the ≈10 kJ minimum required for fuel densities ∼500 g cm−3. High-current, laser-driven ion beams are most promising for this purpose. Because they are born neutralized in picosecond timescales, these beams may deliver the power density required to ignite the compressed DT fuel, ∼10 kJ/10 ps into a spot 20 µm in diameter. Our modelling of ion-based FI include high fusion gain targets and a proof of principle experiment. That modelling indicates the concept is feasible, and provides confirmation of our understanding of the operative physics, a firmer foundation for the requirements, and a better understanding of the optimization trade space. An important benefit of the scheme is that such a high-energy, quasi-monoenergetic ignitor beam could be generated far from the capsule (⩾1 cm away), eliminating the need for a reentrant cone in the capsule to protect the ion-generation laser target, a tremendous practical benefit. This paper summarizes the ion-based FI concept, the integrated ion-driven FI modelling, the requirements on the ignitor beam derived from that modelling, and the progress in developing a suitable laser-driven ignitor ion beam.
The subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft für Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions. Construction of a much more powerful synchrotron, SIS100, at the future international facility for antiprotons and ion research (FAIR) at Darmstadt will lead to an increase in beam intensity by 3 orders of magnitude compared to what is currently available. The purpose of this Letter is to investigate with the help of two-dimensional numerical simulations, the potential of the FAIR to carry out research in the field of HED states in matter.
Two-dimensional simulations of ion beam driven fast ignition are presented. Ignition energies of protons with Maxwellian spectrum and carbon ions with quasimonoenergetic and Maxwellian energy distributions are evaluated. The effect of the coronal plasma surrounding the compressed deuterium-tritium is studied for three different fuel density distributions. It is found that quasi- monoenergetic ions have better coupling with the compressed deuterium-tritium and substantially lower ignition energies. Comparison of quasimonoenergetic carbon ions and relativistic electrons as ignitor beams shows similar laser energy requirements, provided that a laser to quasimonoenergetic carbon ion conversion efficiency around 10% can be achieved.Comment: 8 pages, 10 figures, published in Physics of Plasma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.