A review of chiral, nanoscale science and technology is presented, with the subject divided into two topics. The first discusses nanotechnology in the service of asymmetric synthesis, chiral separations, and analysis. The second topic concerns broader research in the nanotechnology realm, where molecular chirality plays a role in the properties of materials, including molecular devices, chiral supramolecules, chiral nanotubes, chiral fullerenes, and DNA nanotechnology.
Intravenously administered MSCs for acute myocardial infarction attenuate the progressive deterioration in LV function and adverse remodeling in mice with large infarcts, and in ischemic cardiomyopathy, they improve LV function, effects apparently modulated in part by systemic anti-inflammatory activities.
The interaction of the open-chain polyamine N-(3-aminopropyl)- aminopropyl]ethane-1,2diamine (L) with the relevant anionic forms of adenosine 5Ј-triphosphate (ATP), adenosine 5Ј-diphosphate (ADP) and adenosine 5Ј-monophosphate (AMP) is described. Unambiguous criteria for defining thermodynamic selectivity based on the use of effective stability constants are presented. The interaction of L and several other topologically similar polyammonium receptors with ATP has been shown to occur through electrostatic and π-stacking intermolecular forces. The π-stacking binding mode is modulated by the protonation degree of ATP as indicated by fluorescence emission titrations. Evidence for the use of these receptors as ATP luminescent chemosensors is advanced.
DNA interaction with scorpiand azamacrocycles has been achieved through modulation of their binding affinities. Studies performed with different experimental techniques provided evidence that pH or metal-driven molecular reorganizations of these ligands regulate their ability to interact with calf thymus DNA (ctDNA) through an intercalative mode. Interestingly enough, metal-driven molecular reorganizations serve to increase or decrease the biological activities of these compounds significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.