A geophysical interpretative method is proposed to depth, amplitude coefficient (effective magnetization intensity), and index parameter (effective magnetization inclination) determination of a buried structure from magnetic field data anomaly due to a fault, a thin dike or a sphere-like structure. The method is based on the nonlinearly constrained mathematical modelling and also on the stochastic optimization approaches. The proposed interpretative method was first tested on a theoretical synthetic model with different random errors, where a very close agreement was obtained between the assumed and the evaluated parameters. The validity of this method was also tested on practical field data taken from United States, Australia, India and Brazil, where available magnetic data existed and were previously analyzed by different interpretative methods. The agreement between the results obtained by our developed method and those obtained by the other geophysical methods is good.
A geophysical interpretative method is proposed to depth, amplitude coefficient and geometrical shape factor determination of a buried structure from an observed gravity anomaly related to a cylinder or a sphere-like structure.The method is based on nonlinearly constrained mathematical modelling and also on stochastic optimization approaches. The proposed interpretative method first has been tested on theoretical synthetic models with different random errors at a certain depth, where a very close agreement has been observed between assumed and evaluated parameters. Subsequent field data have been considered for which the interpreted results by other methods are available for comparison. The agreement between the obtained results by the proposed technique and by other geophysical methods is good. A statistical analysis has been also carried out to demonstrate the accuracy and the precision of the suggested interpretative method.
A new interpretative approach is proposed to interpret residual gravity anomaly profiles in order to determine the depth, the amplitude coefficient and the geometric shape factor of simple spherical and cylindrical buried structures. This new approach is based on both Fair function minimization and on stochastic optimization modeling. The validity of this interpretative approach is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random noises components and a known statistical distribution. Being theoretically proven, this new approach has been applied on three real field gravity anomalies from Sweden, Senegal and the United States. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable.
A new and simple method based on a nonlinearly mathematical optimization concept has been proposed in this research to interpret magnetic anomalies due to vertical faults and thin dikes. This proposed interpretative method consists of three main steps. The first step is to formulate nonlinearly constrained optimization problems to describe the geophysical problems related to the studied structures. The second step is to suggest an interior penalty function in order to convert these nonlinearly constrained optimization problems into nonlinearly unconstrained optimization ones. The third step is to solve the converted nonlinearly unconstrained optimization problems by using the famous Hooke and Jeeves's algorithm in order to estimate the geophysical parameters of the studied structures such as: depth, amplitude coefficient, and index parameter. The Hooke and Jeeves's algorithm is purposely chosen for being robust and also its application to magnetic data converges rapidly towards the optimal estimation of parameters. This method was first tested on theoretical models with different random noise, where a very close agreement was obtained between the assumed and evaluated parameters.The validity of this new method was also tested on practical field examples taken from Australia, India, United States, and Brazil, where available magnetic data existed and was previously analyzed by different interpretative methods. The agreement between the results obtained by our developed method and those obtained by the other geophysical methods is good. The advantages of this newly proposed method, compared with the other published interpretative methods, also have been discussed and demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.