We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
This paper reports the development of a converter for a large-capacity STATCOM. The converter consists of multiple series-connected 1.7kV module-type IGBTs. An active gate controlled circuit that we developed was applied to the IGBT gate drive circuit, eliminating large-capacity voltage-clamped snubber circuits or voltage balancing circuits that are conventionally needed for a series-connected IGBT converter, which considerably simplifies the converter. A rated-power test was performed, the results of which confirmed satisfactory performance of the developed converter.
Recent observations have revealed that plasmaspheric hiss consists of many discrete waves called “hiss elements.” However, the interaction of energetic electrons (10 keV to several MeV) with the plasmaspheric hiss has only been simulated by the quasilinear (QL) diffusion theory, which does not take the fine wave structure into account. The QL theory cannot address nonlinear particle motions determined by the inhomogeneity factor, which influences the scattering of electrons in pitch angle and energy. This study aims to identify differences between the nonlinear wave–particle interaction and QL theory for plasmaspheric hiss emissions. We conduct test particle simulations to demonstrate the nonlinear interactions between hiss waves and electrons. The nonlinear theory is used to model hiss elements consisting of discrete frequencies and continuous phases. Unlike the other theories, the frequency and amplitude variations in time of the hiss packet are taken into account. Frequencies of the packets are determined to satisfy the separability criterion; when the criterion is met, resonance overlapping is absent, and the electrons can generate each wave element independently. The realistic simulation model of hiss waves reproduces the scattering of electrons by both first- and second-order resonances. We also evaluate the efficiency of electron scattering by calculating nonlinear diffusion coefficients. The diffusion coefficient of equatorial pitch angle is of the same order of magnitude as those calculated by the QL diffusion theory, while we find the effective acceleration of resonant electrons by successive nonlinear trapping, which is not evaluated by the QL theory.
A new semiconductor power device, IEGT (Injection Enhanced Gate Transistor) has been developed by TOSHIBA Semiconductor Company. It is a metal oxide gate semiconductor device and offers advantages compared with the conventional GTO device, the smaller gate power and the higher turn-on and turn-off capability.A converter using the IEGT has been successfully developed. It will be used in static var compensator and so on. This paper describes the design, test results and advantages of the developed 21MVA static var compensator using IEGT compared with the GTO converter.
Purpose The authors derive a nonlinear MOR based on the Cauer ladder network (CLN) representation, which serves as an application of the parameterized MOR. Two parametrized CLN representations were developed to handle the nonlinear magnetic field. Simulations using the parameterized CLN were also conducted using an iron-cored inductor model under the first-order approximation. Design/methodology/approach This work studies the effect of parameter variations on reduced systems and aims at developing a general formulation for parametrized model order reduction (MOR) methods with the dynamical transition of parameterized state. Findings Terms including time derivatives of basis vectors appear in nonlinear state equations, in addition to the linear network equations of the CLN method. The terms are newly derived by an exact formulation of the parameterized CLN and are named parameter variation terms in this study. According to the simulation results, the parameter variation terms play a significant role in the nonlinear state equations when reluctivity is used, while they can be neglected when differential reluctivity is used. Practical implications The computational time of nonlinear transient analyses can be greatly reduced by applying the parameterized CLN when the number of time steps is large. Originality/value The authors introduced a general representation for the dynamical behavior of the reduced system with time-varying parameters, which has not been theoretically discussed in previous studies. The effect of the parameter variations is numerically given as a form of parameter variation terms by the exact derivation of the nonlinear state equations. The influence of parameter variation terms was confirmed by simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.