Auscultation of heart dispenses identification of the cardiac valves. An electronic stethoscope is used for the acquisition of heart murmurs that is further classified into normal or abnormal murmurs. The process of heart sound segmentation involves discrete wavelet transform to obtain individual components of the heart signal and its separation into systole and diastole intervals. This research presents a novel scheme to develop a semi-automatic cardiac valve disorder diagnosis system. Accordingly, features are extracted using wavelet transform and spectral analysis of input signals. The proposed classification scheme is the fusion of adaptive-neuro fuzzy inference system (ANFIS) and HMM. Both classifiers are trained using the extracted features to correctly identify normal and abnormal heart murmurs. Experimental results thus achieved exhibit that proposed system furnishes promising classification accuracy with excellent specificity and sensitivity. However, the proposed system has fewer classification errors, fewer computations, and lower dimensional feature set to build an intelligent system for detection and classification of heart murmurs.
Medical imaging plays an integral role in the identification, segmentation, and classification of brain tumors. The invention of MRI has opened new horizons for brain-related research. Recently, researchers have shifted their focus towards applying digital image processing techniques to extract, analyze and categorize brain tumors from MRI. Categorization of brain tumors is defined in a hierarchical way moving from major to minor ones. A plethora of work could be seen in literature related to the classification of brain tumors in categories such as benign and malignant. However, there are only a few works reported on the multiclass classification of brain images where each part of the image containing tumor is tagged with major and minor categories. The precise classification is difficult to achieve due to ambiguities in images and overlapping characteristics of different type of tumors. In the current study, a comprehensive review of recent research on brain tumors multiclass classification using MRI is provided. These multiclass classification studies are categorized into two major groups: XX and YY and each group are further divided into three subgroups. A set of common parameters from the reviewed works is extracted and compared to highlight the merits and demerits of individual works. Based on our analysis, we provide a set of recommendations for researchers and professionals working in the area of brain tumors classification. Keywords Human brain cancer diagnosis and analysis Á Magnetic resonance imaging Á Human brain tumor multiclassification & Tanzila Saba
Automatic medical image analysis is one of the key tasks being used by the medical community for disease diagnosis and treatment planning. Statistical methods are the major algorithms used and consist of few steps including preprocessing, feature extraction, segmentation, and classification. Performance of such statistical methods is an important factor for their successful adaptation. The results of these algorithms depend on the quality of images fed to the processing pipeline: better the images, higher the results. Preprocessing is the pipeline phase that attempts to improve the quality of images before applying the chosen statistical method. In this work, popular preprocessing techniques are investigated from different perspectives where these preprocessing techniques are grouped into three main categories: noise removal, contrast enhancement, and edge detection. All possible combinations of these techniques are formed and applied on different image sets which are then passed to a predefined pipeline of feature extraction, segmentation, and classification. Classification results are calculated using three different measures: accuracy, sensitivity, and specificity while segmentation results are calculated using dice similarity score. Statistics of five high scoring combinations are reported for each data set. Experimental results show that application of proper preprocessing techniques could improve the classification and segmentation results to a greater extent. However, the combinations of these techniques depend on the characteristics and type of data set used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.