Acute Leukemia is a life-threatening disease common both in children and adults that can lead to death if left untreated. Acute Lymphoblastic Leukemia (ALL) spreads out in children's bodies rapidly and takes the life within a few weeks. To diagnose ALL, the hematologists perform blood and bone marrow examination. Manual blood testing techniques that have been used since long time are often slow and come out with the less accurate diagnosis. This work improves the diagnosis of ALL with a computer-aided system, which yields accurate result by using image processing and deep learning techniques. This research proposed a method for the classification of ALL into its subtypes and reactive bone marrow (normal) in stained bone marrow images. A robust segmentation and deep learning techniques with the convolutional neural network are used to train the model on the bone marrow images to achieve accurate classification results.Experimental results thus obtained and compared with the results of other classifiers Naïve Bayesian, KNN, and SVM. Experimental results reveal that the proposed method achieved 97.78% accuracy. The obtained results exhibit that the proposed approach could be used as a tool to diagnose Acute Lymphoblastic Leukemia and its sub-types that will definitely assist pathologists.
K E Y W O R D Sacute lymphoblastic leukemia, bone marrow, deep learning, segmentation and classification
Medical images have made a great impact on medicine, diagnosis, and treatment. The most important part of image processing is image segmentation. Many image segmentation methods for medical image analysis have been presented in this paper. In this paper, we have described the latest segmentation methods applied in medical image analysis. The advantages and disadvantages of each method are described besides examination of each algorithm with its application in Magnetic Resonance Imaging and Computed Tomography image analysis. Each algorithm is explained separately with its ability and features for the analysis of grey-level images. In order to evaluate the segmentation results, some popular benchmark measurements are presented in the final section.
A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.