Acute Leukemia is a life-threatening disease common both in children and adults that can lead to death if left untreated. Acute Lymphoblastic Leukemia (ALL) spreads out in children's bodies rapidly and takes the life within a few weeks. To diagnose ALL, the hematologists perform blood and bone marrow examination. Manual blood testing techniques that have been used since long time are often slow and come out with the less accurate diagnosis. This work improves the diagnosis of ALL with a computer-aided system, which yields accurate result by using image processing and deep learning techniques. This research proposed a method for the classification of ALL into its subtypes and reactive bone marrow (normal) in stained bone marrow images. A robust segmentation and deep learning techniques with the convolutional neural network are used to train the model on the bone marrow images to achieve accurate classification results.Experimental results thus obtained and compared with the results of other classifiers Naïve Bayesian, KNN, and SVM. Experimental results reveal that the proposed method achieved 97.78% accuracy. The obtained results exhibit that the proposed approach could be used as a tool to diagnose Acute Lymphoblastic Leukemia and its sub-types that will definitely assist pathologists. K E Y W O R D Sacute lymphoblastic leukemia, bone marrow, deep learning, segmentation and classification
The advancement of computer‐ and internet‐based technologies has transformed the nature of services in healthcare by using mobile devices in conjunction with cloud computing. The classical phenomenon of patient–doctor diagnostics is extended to a more robust advanced concept of E‐health, where remote online/offline treatment and diagnostics can be performed. In this article, we propose a framework which incorporates a cloud‐based decision support system for the detection and classification of malignant cells in breast cancer, while using breast cytology images. In the proposed approach, shape‐based features are used for the detection of tumor cells. Furthermore, these features are used for the classification of cells into malignant and benign categories using Naive Bayesian and Artificial Neural Network. Moreover, an important phase addressed in the proposed framework is the grading of the affected cells, which could help in grade level necessary medical procedures for patients during the diagnostic process. For demonstrating the e effectiveness of the proposed approach, experiments are performed on real data sets comprising of patients data, which has been collected from the pathology department of Lady Reading Hospital of Pakistan. Moreover, a cross‐validation technique has been performed for the evaluation of the classification accuracy, which shows performance accuracy of 98% as compared to physical methods used by a pathologist for the detection and classification of the malignant cell. Experimental results show that the proposed approach has significantly improved the detection and classification of the malignant cells in breast cytology images.
Visual inspection for the quantification of malaria parasitaemiain (MP) and classification of life cycle stage are hard and time taking. Even though, automated techniques for the quantification of MP and their classification are reported in the literature. However, either reported techniques are imperfect or cannot deal with special issues such as anemia and hemoglobinopathies due to clumps of red blood cells (RBCs). The focus of the current work is to examine the thin blood smear microscopic images stained with Giemsa by digital image processing techniques, grading MP on independent factors (RBCs morphology) and classification of its life cycle stage. For the classification of the life cycle of malaria parasite the k‐nearest neighbor, Naïve Bayes and multi‐class support vector machine are employed for classification based on histograms of oriented gradients and local binary pattern features. The proposed methodology is based on inductive technique, segment malaria parasites through the adaptive machine learning techniques. The quantification accuracy of RBCs is enhanced; RBCs clumps are split by analysis of concavity regions for focal points. Further, classification of infected and non‐infected RBCs has been made to grade MP precisely. The training and testing of the proposed approach on benchmark dataset with respect to ground truth data, yield 96.75% MP sensitivity and 94.59% specificity. Additionally, the proposed approach addresses the process with independent factors (RBCs morphology). Finally, it is an economical solution for MP grading in immense testing.
Malaria parasitemia diagnosis and grading is hard and still far from perfection. Inaccurate diagnosis and grading has caused tremendous deaths rate particularly in young children worldwide. The current research deeply reviews automated malaria parasitemia diagnosis and grading in thin blood smear digital images through image analysis and computer vision based techniques. Actually, state-of-the-art reveals that current proposed practices present partially or morphology dependent solutions to the problem of computer vision based microscopy diagnosis of malaria parasitemia. Accordingly, a deep appraisal of the current practices is investigated, compared and analyzed on benchmark datasets. The open gaps are highlighted and the future directions are laid down for a complete automated microscopy diagnosis for malaria parasitemia based on those factors that have not been affected by other diseases. Moreover, a general computer vision framework to perform malaria parasitemia estimation/grading is constructed in universal directions. Finally, remaining problems are highlighted and possible directions are suggested. RESEARCH HIGHLIGHTS: The current research presents a microscopic malaria parasitemia diagnosis and grading of malaria in thin blood smear digital images through image analysis and computer vision based techniques. The open gaps are highlighted and future directions for a complete automated microscopy diagnosis of malaria parasitemia mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.