Remodeling, diastolic dysfunction, and arterial stiffness are some of the alterations through which obesity affects the cardiovascular system. Fibrosis and inflammation are important mechanisms underlying cardiovascular remodeling, although the precise promoters involved in these processes are still unclear. Galectin-3 (Gal-3) induces inflammation and fibrosis in the cardiovascular system. We have investigated the potential role of Gal-3 in cardiac damage in morbidly obese patients, and we have evaluated the protective effect of the Gal-3 inhibition in the occurrence of cardiovascular fibrosis and inflammation in an experimental model of obesity. Morbid obesity is associated with alterations in cardiac remodeling, mainly left ventricular hypertrophy and diastolic dysfunction. Obesity and hypertension are the main determinants of left ventricular hypertrophy. Insulin resistance, left ventricular hypertrophy, and circulating levels of C-reactive protein and Gal-3 are associated with a worsening of diastolic function in morbidly obese patients. Obesity upregulates Gal-3 production in the cardiovascular system in a normotensive animal model of diet-induced obesity by feeding for 6 weeks a high-fat diet (33.5% fat). Gal-3 inhibition with modified citrus pectin (100 mg/kg per day) reduced cardiovascular levels of Gal-3, total collagen, collagen I, transforming and connective growth factors, osteopontin, and monocyte chemoattractant protein-1 in the heart and aorta of obese animals without changes in body weight or blood pressure. In morbidly obese patients, Gal-3 levels are associated with diastolic dysfunction. In obese animals, Gal-3 blockade decreases cardiovascular fibrosis and inflammation. These data suggest that Gal-3 could be a novel therapeutic target in cardiac fibrosis and inflammation associated with obesity.
BACKGROUND AND PURPOSEExposure to mercury is known to increase cardiovascular risk but the underlying mechanisms are not well explored. We analysed whether chronic exposure to low mercury doses affects endothelial modulation of the coronary circulation.
EXPERIMENTAL APPROACHLeft coronary arteries and hearts from Wistar rats treated with either HgCl2 (first dose 4.6 mg·kg -1 , subsequent doses 0.07 mg·kg -1 day -1 , 30 days) or vehicle were used. Endothelial cells from pig coronary arteries incubated with HgCl2 were also used.
KEY RESULTSMercury treatment increased 5-HT-induced vasoconstriction but reduced acetylcholine-induced vasodilatation. It also reduced nitric oxide (NO) production and the effects of NO synthase inhibition with L-NAME (100 mmol·L ) reduced 5-HT responses and increased acetylcholine responses only in vessels from mercury-treated rats. In isolated hearts from mercury-treated rats, coronary perfusion and diastolic pressure were unchanged, but developed isovolumetric systolic pressure was reduced. In these hearts, L-NAME increased coronary perfusion pressure and diastolic pressure while it further reduced developed systolic pressure.
CONCLUSIONS AND IMPLICATIONSChronic exposure to low doses of mercury promotes endothelial dysfunction of coronary arteries, as shown by decreased NO bioavailability induced by increased oxidative stress. These effects on coronary function increase resistance to flow, which under overload conditions might cause ventricular contraction and relaxation impairment. These findings provide further evidence that mercury, even at low doses, could be an environmental risk factor for cardiovascular disease.
AbbreviationsCPP, coronary perfusion pressure; DEA-NO, diethylamine NONOate; DHE, dihydroethidium; FITC, fluorescein isothiocyanate; KHS, Krebs-Henseleit solution; L-NAME, N-nitro-L-arginine methyl ester; LVISP, left ventricle isovolumetric systolic pressure; NOS, nitric oxide synthase; ROS, reactive oxygen species; SOD, superoxide dismutase; TEA, tetraethylammonium BJP British Journal of Pharmacology
Leptin could participate in the vascular remodeling and stiffness associated with obesity by ECM production in VSMCs through the activation of oxidative stress-PI3K/Akt pathway and the production of the profibrotic factors TGF-β and CTGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.