To evaluate a possible relationship between vitamin D levels and bone mineral density (BMD) and the prevalence of hypovitaminosis in a population of postmenopausal women from a rheumatologic outpatient clinic in Madrid, Spain, 171 postmenopausal women (aged 47-66 years) divided into two groups (osteoporotic and nonosteoporotic, according to WHO criteria) were studied between November and June. Liver and kidney function were normal in all subjects. Serum parathyroid hormone (PTH) and calcidiol levels were determined and bone densitometry carried out at the lumbar spine and hip level. PTH and calcidiol serum levels did not show any correlation. Serum PTH was inversely related to BMD at both hip and lumbar spine in the total group, and at the hip with calcidiol levels lower than 37 nmol/l. Calcidiol was directly related to hip BMD only when levels were lower than 37 nmol/l. Results of a stepwise multiple regression analysis showed that the single factor which affected BMD at the hip was calcidiol in the subgroup with serum calcidiol levels below 37 nmol/l, while in the subgroup with serum calcidiol levels above 37 nmol/l, the main factor affecting hip BMD was serum PTH. The prevalence of vitamin D deficiency at a cutoff of 37 nmol/l was 64%. In summary, calcidiol serum levels below 37 nmol/l seem to affect bone mass, regardless of the effect of PTH. Vitamin D deficiency is a frequent finding in the postmenopausal women who attend a rheumatology outpatient clinic in Madrid. Vitamin D supplementation should therefore be considered in this population during the winter season.
Bone loss with aging may be due, at least in part, to inadequate bone formation. Moreover, the process of bone aging is known to follow a different pattern throughout the skeleton. In this study, we examined the cell proliferation rate (area under the cell growth curve, AUC) and the secretion of C-terminal type I procollagen (PICP), alkaline phosphatase (ALP), and osteocalcin (OC) in primary cultures of osteoblastic cells from human trabecular bone. Osteoblastic cells were obtained for 168 donors (100 women and 68 men). Ninety-eight bone samples were obtained from subjects undergoing knee arthroplastia, 52 aged 50-70 years (64 +/- 5) and 46 over age 70 (73 +/- 2). Another 70 bone samples were obtained from subjects undergoing hip arthroplastia; 51 were 50-70 years old (64 +/- 4) and 19 were over 70 (75 +/- 5). Osteoblastic cells from the older donors had a lower proliferation rate and OC secretion than those from younger subjects. However, ALP secretion was higher in the former subjects, whereas PICP secretion was unchanged. Osteoblastic cells from hip had a lower proliferation rate than those from knee. PICP secretion was also lower and ALP secretion was higher in the former cells. In age-matched cell cultures, osteoblastic cells from the knee had higher proliferation rate and PICP secretion than osteoblastic cells from the hip. However, ALP secretion was lower in knee osteoblastic cells than those from hip only in the younger group. With aging, ALP secretion was found to increase in knee osteoblactic cells, whereas OC secretion decreased in osteoblastic cell cultures from the hip. Our findings suggest that bone loss with aging may be accounted for, at least in part, by a decreased osteoblastic cell proliferation and an increased osteoblastic maturation. In addition, our data indicate that these changes with aging do not occur similarly at different skeletal sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.