Article:Parfenov, E.V., Yerokhin, A., Nevyantseva, R.
ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. Abstract This paper reviews the present understanding of electrolytic plasma processes (EPPs) and approaches to their modelling. Based on the EPP type, characteristics and classification, it presents a generalised phenomenological model as the most appropriate one from the process diagnostics and control point of view. The model describes the system 'power supply -electrolyser -electrode surface' as a system with lumped parameters characterising integral properties of the surface layer and integral parameters of the EPP. The complexity of EPPs does not allow the drawing of a set of differential equations describing the treatment, although a model can be formalised for a particular process as a black box regression. Evaluation of dynamic properties reveals the multiscale nature of electrolytic plasma processes, which can be described by three time constants separated by 2-3 orders of magnitude (minutes, seconds and milliseconds), corresponding to different groups of characteristics in the model. Further developments based on the phenomenological approach and providing deeper insights into EPPs are proposed using frequency response methodology and electromagnetic field modelling. Examples demonstrating the efficiency of the proposed approach are supplied for EPP modelling with static and dynamic neural networks, frequency response evaluations and electromagnetic field calculations.
This work aimed at the development of wear and corrosion resistant oxide coatings for medical implants made of zirconium alloy, by plasma electrolytic oxidation (PEO). The effect of sodium silicate and boric acid addition to calcium acetate electrolyte on the coating properties was studied. Different aspects of the PEO coating were investigated: microstructure, electrochemical and wear behavior, wettability and apatite-forming ability. The resultant coatings consist of a dense inner layer 1.4–2.2 µm thick and a porous outer layer. The total thickness of the coating is 12–20 µm. It was found that the coating contains the tetragonal zirconia (70–95%). The obtained coatings show high corrosion resistance and reduce the surface corrosion current by 1–3 orders of magnitude, depending on the electrolyte additive, compared to the uncoated surface. The addition of boric acid to the electrolyte significantly increases the wear resistance of the coating and reduces the coefficient of friction. In terms of the combination of the coating characteristics, the electrolyte with the addition of the alkali and boric acid is recommended as the most effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.