Disentangling distinct stellar populations along the red-giant branches (RGBs) of Globular Clusters (GCs) is possible by using the pseudo two-color diagram dubbed chromosome map (ChM). One of the most intriguing findings is that the so-called first-generation (1G) stars, characterized by the same chemical composition of their natal cloud, exhibit extended sequences in the ChM. Unresolved binaries and internal variations in helium or metallicity have been suggested to explain this phenomenon. Here, we derive high-precision Hubble Space Telescope photometry of the GCs NGC 6362 and NGC 6838 and build their ChMs. We find that both 1G RGB and main-sequence (MS) stars exhibit wider ChM sequences than those of second-generation (2G). The evidence of this feature even among unevolved 1G MS stars indicates that chemical inhomogeneities are imprinted in the original gas. We introduce a pseudo two-magnitude diagram to distinguish between helium and metallicity, and demonstrate that star-to-star metallicity variations are responsible for the extended 1G sequence. Conversely, binaries provide a minor contribution to the phenomenon. We estimate that the metallicity variations within 1G stars of 55 GCs range from less than [Fe/H]∼0.05 to ∼0.30 and mildly correlate with cluster mass. We exploit these findings to constrain the formation scenarios of multiple populations showing that they are qualitatively consistent with the occurrence of multiple generations. In contrast, the fact that 2G stars have more homogeneous iron content than the 1G challenges the scenarios based on accretion of material processed in massive 1G stars onto existing protostars.
We use images collected with the near-infrared camera (NIRCam) on board the James Webb Space Telescope and with the Hubble Space Telescope (HST) to investigate multiple populations at the bottom of the main sequence (MS) of 47 Tucanae. The mF115W vs. mF115W − mF322W2 CMD from NIRCam shows that, below the knee, the MS stars span a wide color range, where the majority of M-dwarfs exhibit blue colors, and a tail of stars are distributed toward the red. A similar pattern is observed from the mF160W vs. mF110W − mF160W color-magnitude diagram (CMD) from HST, and multiple populations of M-dwarfs are also visible in the optical mF606W vs. mF606W − mF814W CMD. The NIRCam CMD shows a narrow sequence of faint MS stars with masses smaller than $0.1\, \mathcal {M}_{\odot }$. We introduce a chromosome map of M-dwarfs that reveals an extended first population and three main groups of second-population stars. By combining isochrones and synthetic spectra with appropriate chemical composition, we simulate colors and magnitudes of different stellar populations in the NIRCam filters (at metallicities [Fe/H]=-1.5 and [Fe/H]=-0.75) and identify the photometric bands that provide the most efficient diagrams to investigate the multiple populations in globular clusters. Models are compared with the observed CMDs of 47 Tucanae to constrain M-dwarfs’ chemical composition. Our analysis suggests that the oxygen range needed to reproduce the colors of first- and second-population M-dwarfs is similar to that inferred from spectroscopy of red giants, constraining the proposal that the chemical variations are due to mass transfer phenomena in proto-clusters.
The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully-comprehensive knowledge of the RGB mass loss is still missing. Galactic Globular Clusters (GCs) are ideal targets to derive empirical formulations of mass loss, but the presence of multiple populations with different chemical compositions has been a major challenge to constrain stellar masses and RGB mass losses. Recent work has disentangled the distinct stellar populations along the RGB and the horizontal branch (HB) of 46 GCs, thus providing the possibility to estimate the RGB mass loss of each stellar population. The mass losses inferred for the stellar populations with pristine chemical composition (called first-generation or 1G stars) tightly correlate with cluster metallicity. This finding allows us to derive an empirical RGB mass-loss law for 1G stars. In this paper we investigate seven GCs with no evidence of multiple populations and derive the RGB mass loss by means of high-precision Hubble-Space Telescope photometry and accurate synthetic photometry. We find a cluster-to-cluster variation in the mass loss ranging from ∼0.1 to ∼0.3 M⊙. The RGB mass loss of simple-population GCs correlates with the metallicity of the host cluster. The discovery that simple-population GCs and 1G stars of multiple population GCs follow similar mass-loss vs. metallicity relations suggests that the resulting mass-loss law is a standard outcome of stellar evolution.
M 22 (NGC 6656) is a chemically complex globular cluster-like system reported to harbour heavy element abundance variations. However, the extent of these variations and the origin of this cluster is still debated. In this work, we investigate the chemical in-homogeneity of M 22 using differential line-by-line analysis of high-quality (R = 110,000, S/N = 300 per pixel at 514 nm) VLT/UVES spectra of six carefully chosen red giant branch stars. By achieving abundance uncertainties as low as ∼0.01 dex (∼2 per cent), this high precision data validates the results of previous studies and reveals variations in Fe, Na, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Y, Zr, La, Ce, Nd, Sm and Eu. Additionally, we can confirm that the cluster hosts two stellar populations with a spread of at least 0.24 dex in [Fe/H] and an average s-process abundance spread of 0.65 dex. In addition to global variations across the cluster, we also find non-negligible variations within each of the two populations, with the more metal-poor population hosting larger spreads in elements heavier than Fe than the metal-rich. We address previous works which do not identify anomalous abundances and relate our findings to our current dynamical understanding of the cluster. Given our results, we suggest that M 22 is either a nuclear star cluster, the product of two merged clusters, or an original building block of the Milky Way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.