The aim of this work is to present results of mechanical characterization and ballistic test of alumina-based armor plates. Three compositions (92, 96, and 99 wt% Al2O3) were tested for 10 mm thick plates processed in an industrial plant. Samples were pressed at 110 MPa and sintered at 1600°C for 6 h. Relative density, Vickers hardness, and four-point flexural strength measurements of samples after sintering were performed. Results showed that the strength values ranged from 210 to 300 MPa depending on the porosity, with lower standard deviation for the 92 wt% Al2O3 sample. Plates (120 mm × 120 mm × 12 mm) of this composition were selected for ballistic testing according to AISI 1045, using a metallic plate as backing and witness plates in the case of penetration or deformation. Standard NIJ-0108.01 was followed in regard to the type of projectile to be used (7.62 × 51 AP, Level IV, 4068 J). Five alumina plates were used in the ballistic tests (one shot per plate). None of the five shots penetrated or even deformed the metal sheet, showing that the composition containing 92 wt% Al2O3 could be considered to be a potential ballistic ceramic, being able to withstand impacts with more than 4000 J of kinetic energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.