We present a review of recent progress in the studies of the nonlinear- and electro-optics of liquid crystals, particularly in their meta-material forms. An analytical expression for the "ultimate" optical nonlinearity of nematic liquid crystals is obtained, and several routes to realizing such optical nonlinearities are discussed. We also describe two approaches for realizing tunable or reconfigurable negative-zero-positive index materials: (1) planar nano-structured frequency selective surfaces [FSS] containing nematic liquid crystals; (2) core-shell nano-spheres randomly distributed in bulk nematic liquid crystal matrix. Such metamaterials can be designed for applications in the visible-infrared, as well as Terahertz and microwave regimes. These liquid crystalline meta-materials are capable of supra-nonlinearities characterized by refractive index changing coefficients of over 1 cm2/watt and microseconds response times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.