High latitude regions (≥ 50 N and ≥ 40 S) are thought to contribute substantially to contemporary global dust emissions which can influence biogeochemical cycling as well as geomorphic, cryospheric and atmospheric processes. However, there are few measurements of the emission or deposition of dust derived from these areas that extend beyond a single event or season. This article reports the deposition of locally-derived dust to an ice-free area of West Greenland over 2 years from 23 traps distributed across five sampling sites. Local dust sources include glacial outwash plains, glacially-derived delta deposits and the reworking of loessic soils. Annual dust deposition is estimated at 37.3 to 93.9 g m À2 for 2017-2018 and 9.74 to 28.4 g m À2 in 2018-2019. This annual variation is driven by high deposition rates observed in spring 2017 of 0.48 g m À2 d À1 compared to the range of 0.03 to 0.07 g m À2 d À1 during the rest of the monitoring period. The high deposition rates in spring 2017 were due to warmer than average conditions and high meltwater sediment supply that delivered large quantities of sediment to local outwash plains in 2016. For other seasons, dust deposition was lower over both autumn-winter periods (0.03 g m À2 d À1 ) than during the spring and summer (0.04-0.07 g m À2 d À1 ). When sediment availability is limited, dust deposition increases with increasing temperature and wind speed.Secondary data from dust-related weather type/observation codes and visibility records were found to be inconsistent with measured dust deposition during the period of study. One possible reason for this is the complex nature of the terrain between the observation and sample sites. The dust deposition rates measured here and the infidelity of the observed dust with secondary data sources reveal the importance of direct quantification of dust processes to accurately constrain the dust cycle at high latitudes.
Although visible evidence shows that erosion has damaged many archaeological sites, especially when tilled, there has hitherto been scant attention to its quantitative assessment. Accordingly, the archaeology communities lack insight into whether long‐term threats to the stability and integrity of soils at these sites allow these cultural repositories to be preserved for future human generations. Of the techniques that are available to measure erosion rates, few have been tested on the timescales needed. We selected three archaeological sites with high expected erosion rates. We combined optically stimulated luminescence (OSL) dating with analyses of radioactive fallout isotope distributions to assess erosion patterns and rates. An age–depth representation of OSL single‐aliquot results was developed to determine past erosion, and to identify stable land surfaces on centennial to millennia timescales. Fall‐out isotopes of cesium (Cs) and plutonium (Pu) were suitable for shorter timescales: The 240Pu/239Pu ratios and a correlation between activities of 239+240Pu and 137Cs demonstrated the weapons testing fallout origin of these isotopes in the ~1952–1966 timeframe. Erosion rates in recent decades ranged from 2 to 6 mm/year on the studied sites. Our results indicate that erosion is not only tied to the past, but keeps on threatening archaeological sites.
Soil nutrient pools in the dry low Arctic are likely to be released under climatic change and this bioavailability has the potential to increase both terrestrial and aquatic productions. As well as the direct effect of warming, external disturbances such as nutrient deposition and grazing can also drive ecosystem change. This study in the low Arctic Kangerlussuaq area of southwest Greenland compared soil nutrient pools in terms of both topographic position on a catena and by soil depth in two small catchments with contrasting muskox abundance. We tested the hypotheses that there were differences between soil carbon (C), nitrogen (N) and phosphorus (P) across a soil catena (ridge ‐ slope ‐ valley) and by soil depth (litter ‐ 0–5 cm ‐ 25–30 cm) for the two sites (SS17b, muskox present, versus ‐ SS85, no muskox). Total C and N concentrations of soils were on average lower at SS17b compared to SS85. Moreover, the soil N concentration increased downslope in the catena with higher amounts in the valleys compared to the slopes and ridges. Soil P concentration (0.70 g P kg−1) was similar between catchments; however, litter P content was substantially different. The difference in soil nutrients between the two catchments was most likely due to the presence of muskox at SS17b, and hence grazing associated processes (defecation, altered microbiology and nutrient cycling). This study emphasises the heterogeneity of arctic landscapes and need for ecosystem specific research. Highlights Soil nutrient pools in two low‐arctic catchments in Greenland were compared. Grazing and dung inputs by muskox affect soil nutrient pools in Greenland. Soil P stores in Kangerlussuaq are similar to intensively managed farmland in Europe. The heterogeneity of arctic landscapes and need for ecosystem‐specific research are emphasised.
The aim of the second Scientific Expedition Edgeøya Spitsbergen (SEES), which took place from 13 to 22 July 2022, was to study the consequences of climate warming in the High Arctic, building on ecological data gathered by the Dutch Arctic Station on Edgeøya between 1968 and 1987 and the first SEES expedition in 2015. In this Perspective essay, I ponder the actual purpose of SEES 2022, in which I participated as an early-career research scientist. The research activities were very limited and climate change was named as the restricting factor. Fifty researchers were accompanied by 50 tourists, journalists and policymakers. The choice made by the expedition leaders and funders to go for a tourist vessel was mostly financial, and the difference in media output versus expected research output substantial, which points to paradoxes related to research, publicity, politics and tourism in the Arctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.