The first subatomic resolution structure of a 36 kDa protein [aldose reductase (AR)] is presented. AR was cocrystallized at pH 5.0 with its cofactor NADP+ and inhibitor IDD 594, a therapeutic candidate for the treatment of diabetic complications. X-ray diffraction data were collected up to 0.62 A resolution and treated up to 0.66 A resolution. Anisotropic refinement followed by a blocked matrix inversion produced low standard deviations (<0.005 A). The model was very well ordered overall (CA atoms' mean B factor is 5.5 A2). The model and the electron-density maps revealed fine features, such as H-atoms, bond densities, and significant deviations from standard stereochemistry. Other features, such as networks of hydrogen bonds (H bonds), a large number of multiple conformations, and solvent structure were also better defined. Most of the atoms in the active site region were extremely well ordered (mean B approximately 3 A2), leading to the identification of the protonation states of the residues involved in catalysis. The electrostatic interactions of the inhibitor's charged carboxylate head with the catalytic residues and the charged coenzyme NADP+ explained the inhibitor's noncompetitive character. Furthermore, a short contact involving the IDD 594 bromine atom explained the selectivity profile of the inhibitor, important feature to avoid toxic effects. The presented structure and the details revealed are instrumental for better understanding of the inhibition mechanism of AR by IDD 594, and hence, for the rational drug design of future inhibitors. This work demonstrates the capabilities of subatomic resolution experiments and stimulates further developments of methods allowing the use of the full potential of these experiments.
Aldose reductase is a NADP(H)-dependent enzyme, believed to be strongly implicated in the development of degenerative complications of Diabetes Mellitus. The search for specific inhibitors of this enzyme has thus become a major pharmaceutic challenge. In this study, we applied both X-ray crystallography and mass spectrometry to characterize the interactions between aldose reductase and four representative inhibitors: AminoSNM, Imirestat, LCB3071, and IDD384. If crystallography remains obviously the only way to get an extensive description of the contacts between an inhibitor and the enzymatic site, the duration of the crystallographic analysis makes this technique incompatible with high throughput screenings of inhibitors. On the other hand, dissociation experiments monitored by mass spectrometry permitted us to evaluate rapidly the relative gas-phase stabilities of the aldose reductase-inhibitor noncovalent complexes. In our experiments, dissociation in the gas-phase was provoked by increasing the accelerating voltage of the ions (Vc) in the source-analyzer interface region: the Vc value needed to dissociate 50% of the noncovalent complex initially present (Vc50) was taken as a gas-phase stability parameter of the enzyme-inhibitor complex. Interestingly, the Vc50 were found to correlate with the energy of the electrostatic and H-bond interactions involved in the contact aldose reductase/inhibitor (Eel-H), computed from the crystallographic model. This finding may be specially interesting in a context of drug development. Actually, during a drug design optimization phase, the binding of the drug to the target enzyme is often optimized by modifying its interatomic electrostatic and H-bond contacts; because they usually depend on a single atom change on the drug, and are easier to introduce than the hydrophobic interactions. Therefore, the Vc50 may help to monitor the chemical modifications introduced in new inhibitors. X-ray crystallography is clearly needed to get the details of the contacts and to rationalize the design. Nevertheless, once the cycle of chemical modification is engaged, mass spectrometry can be used to select a priori the drug candidates which are worthy of further crystallographic investigation. We thus propose to use the two techniques in a complementary way, to improve the screening of large collections of inhibitors.
The crystallographic structure of the complex between human aldose reductase (AR2) and one of its inhibitors, IDD384, has been solved at 1.7 A resolution from crystals obtained at pH 5.0. This structure shows that the binding of the inhibitor's hydrophilic head to the catalytic residues Tyr48 and His110 differs from that found previously with porcine AR2. The difference is attributed to a change in the protonation state of the inhibitor (pK(a) = 4.52) when soaked with crystals of human (at pH 5.0) or pig lens AR2 (at pH 6.2). This work demonstrates how strongly the detailed binding of the inhibitor's polar head depends on its protonation state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.