In this paper we present a study of how the magnetic field of a circular planar magnetron is affected when it is exposed to a pulsed high current discharge. Spatially resolved magnetic field measurements are presented and the magnetic disturbance is quantified for different process parameters. The magnetic field is severely deformed by the discharge and we record changes of several millitesla, depending on the spatial location of the measurement. The shape of the deformation reveals the presence of azimuthally drifting electrons close to the target surface. Time resolved measurements show a transition between two types of magnetic perturbations. There is an early stage that is in phase with the axial discharge current and a late stage that is not in phase with the discharge current. The later part of the magnetic field deformation is seen as a travelling magnetic wave. We explain the magnetic perturbations by a combination of E × B drifting electrons and currents driven by plasma pressure gradients and the shape of the magnetic field. A plasma pressure wave is also recorded by a single tip Langmuir probe and the velocity (∼10 3 m s −1 ) of the expanding plasma agrees well with the observed velocity of the magnetic wave. We note that the axial (discharge) current density is much too high compared to the azimuthal current density to be explained by classical collision terms, and an anomalous charge transport mechanism is required.
High values of normalized β (βN∼4) and safety factor (qmin∼2) have been sustained simultaneously for ∼2s in DIII-D [J.L. Luxon, Nucl. Fusion 42, 64 (2002)], suggesting a possible path to high fusion performance, steady-state tokamak scenarios with a large fraction of bootstrap current. The combination of internal transport barrier and negative central magnetic shear at high β results in high confinement (H89P>2.5) and large bootstrap current fraction (fBS>60%) with good alignment. Previously, stability limits in plasmas with core transport barriers have been observed at moderate values of βN (<3) because of the pressure peaking which normally develops from improved core confinement. In recent DIII-D experiments, the internal transport barrier is clearly observed in the electron density and in the ion temperature and rotation profiles at ρ∼0.5 but not in the electron temperature profile, which is very broad. The misalignment of Ti and Te gradients may help to avoid a large local pressure gradient. Furthermore, at low internal inductance ∼0.6, the current density gradients are close to the vessel and the ideal kink modes are strongly wall-coupled. Simultaneous feedback control of both external and internal sets of n=1 magnetic coils was used to maintain optimal error field correction and resistive wall mode stabilization, allowing operation above the free-boundary β limit. Large particle orbits at high safety factor in the core help to broaden both the pressure and the beam-driven current profiles, favorable for steady-state operation. At plasma current flat top and β∼5%, a noninductive current fraction of ∼100% has been observed. Stability modeling shows the possibility for operation up to the ideal-wall limit at β∼6%.
ABSTRACT. Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Models now exist for the n e pedestal profile and the p e height at the onset of Type-I ELMs, and progress has been made toward models of the T e pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics plays an important role in the relationship between the width and height of the n e pedestal. Plasma physics appears to dominate in setting the T e pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B)
Recent experiments in the DIII-D tokamak have demonstrated real-time control and dissipation of post-disruption runaway electron (RE) beams. In the event that disruption avoidance, control, and mitigation schemes fail to avoid or suppress RE generation, active control of the RE beam may be an important line of defense to prevent the rapid,
Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.