In this study, we introduce a robust method for precise determination of atmospheric boundary layer (ABL) top from COSMIC global positioning system radio occultation measurements. We apply a wavelet covariance transform to compute the convolution of COSMIC-observed bending angle/refractivity profile with a Haar function and use the maximum covariance to identify the ABL top, making detection of even small transitions possible. Results obtained were compared with radiosonde N profiles for verification of the ABL top. This procedure developed was used to study the global distribution of ABL top with special reference to the inter-tropical convergence zone.
Structure and variability of the tropical tropopause are presented using radio occultation measurements by CHAMP/GPS (CHAllenging Mini satellite Payload/ Global Positioning System) from May 2001 to December 2004 (with a total of 175,149 occultations). The tropopause heights defined by both lapse rate and cold point generally show large-scale, off-equatorial maxima (tropopause increase at 20°N or S than at equator), and sometimes even a high tropopause for about 0.3 to 0.65 km (on an average) at 20°N and S simultaneously than at the equator along a particular meridian, in contrast to our previous knowledge. Although this feature has already been reported partially during the summer monsoon season, the present study shows the seasonal and geographical distributions of the tropical tropopause comprehensively using a new promising observational technique. In addition, the vertical shape of the tropopause is found to be sharp in the equatorial region and broad in the subtropics especially in northern winter. Possible mechanisms are discussed in light of dynamical and radiative processes.
The design, principles of operation, calibration, and data analysis approaches of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the NASA Ionospheric Connection (ICON) satellite have been documented prior to the ICON launch. Here we update and expand on the MIGHTI wind data analysis and discuss the on-orbit instrument performance. In particular, we show typical raw data and we describe key processing steps, including the correction of a “signal-intensity dependent phase shift,” which is necessitated by unexpected detector behavior. We describe a new zero-wind calibration approach that is preferred over the originally planned approach due to its higher precision. Similar to the original approach, the new approach is independent of any a priori data. A detailed update on the wind uncertainties is provided and compared to the mission requirements, showing that MIGHTI has met the ICON mission requirements. While MIGHTI observations are not required to produce absolute airglow brightness profiles, we describe a relative brightness profile product, which is included in the published data. We briefly review the spatial resolution of the MIGHTI wind data in addition to the data coverage and data gaps that occurred during the nominal mission. Finally, we include comparisons of the MIGHTI wind data with ground-based Fabry-Perot interferometer observations and meteor radar observations, updating previous studies with more recent data, again showing good agreement. The data processing steps covered in this work and all the derived wind data correspond to the MIGHTI data release Version 5 (v05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.